Experimental studies of collective dynamics in lipid bilayers have been challenging due to the energy resolution required to observe these low-energy phonon-like modes. However, inelastic x-ray scattering (IXS) measurements-a technique for probing vibrations in soft and biological materials-are now possible with sub-meV resolution, permitting direct observation of low-energy, phonon-like modes in lipid membranes. Here, IXS measurements with sub-meV energy resolution reveal a low-energy optic-like phonon mode at roughly 3 meV in the liquid-ordered (L) and liquid-disordered phases of a ternary lipid mixture.
View Article and Find Full Text PDFSighted animals use visual signals to discern directional motion in their environment. Motion is not directly detected by visual neurons, and it must instead be computed from light signals that vary over space and time. This makes visual motion estimation a near universal neural computation, and decades of research have revealed much about the algorithms and mechanisms that generate directional signals.
View Article and Find Full Text PDFLearning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution (Fukumizu 1998 1E-03).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Foraging animals must use decision-making strategies that dynamically adapt to the changing availability of rewards in the environment. A wide diversity of animals do this by distributing their choices in proportion to the rewards received from each option, Herrnstein's operant matching law. Theoretical work suggests an elegant mechanistic explanation for this ubiquitous behavior, as operant matching follows automatically from simple synaptic plasticity rules acting within behaviorally relevant neural circuits.
View Article and Find Full Text PDFMemorization and generalization are complementary cognitive processes that jointly promote adaptive behavior. For example, animals should memorize safe routes to specific water sources and generalize from these memories to discover environmental features that predict new ones. These functions depend on systems consolidation mechanisms that construct neocortical memory traces from hippocampal precursors, but why systems consolidation only applies to a subset of hippocampal memories is unclear.
View Article and Find Full Text PDFLipid membrane viscosity is critical to biological function. Bacterial cells grown in different environments alter their lipid composition in order to maintain a specific viscosity, and membrane viscosity has been linked to the rate of cellular respiration. To understand the factors that determine the viscosity of a membrane, we ran equilibrium all-atom simulations of single component lipid bilayers and calculated their viscosities.
View Article and Find Full Text PDFNeural computation in biological and artificial networks relies on the nonlinear summation of many inputs. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function, but quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context.
View Article and Find Full Text PDFModern recording techniques now permit brain-wide sensorimotor circuits to be observed at single neuron resolution in small animals. Extracting theoretical understanding from these recordings requires principles that organize findings and guide future experiments. Here we review theoretical principles that shed light onto brain-wide sensorimotor processing.
View Article and Find Full Text PDFAll animals must transform ambiguous sensory data into successful behavior. This requires sensory representations that accurately reflect the statistics of natural stimuli and behavior. Multiple studies show that visual motion processing is tuned for accuracy under naturalistic conditions, but the sensorimotor circuits extracting these cues and implementing motion-guided behavior remain unclear.
View Article and Find Full Text PDFOptical refraction causes light to bend at interfaces between optical media. This phenomenon can significantly distort visual stimuli presented to aquatic animals in water, yet refraction has often been ignored in the design and interpretation of visual neuroscience experiments. Here we provide a computational tool that transforms between projected and received stimuli in order to detect and control these distortions.
View Article and Find Full Text PDFAnimals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates.
View Article and Find Full Text PDFGoal-directed animal behaviors are typically composed of sequences of motor actions whose order and timing are critical for a successful outcome. Although numerous theoretical models for sequential action generation have been proposed, few have been supported by the identification of control neurons sufficient to elicit a sequence. Here, we identify a pair of descending neurons that coordinate a stereotyped sequence of engagement actions during Drosophila melanogaster male courtship behavior.
View Article and Find Full Text PDFBoth vertebrates and invertebrates perceive illusory motion, known as "reverse-phi," in visual stimuli that contain sequential luminance increments and decrements. However, increment (ON) and decrement (OFF) signals are initially processed by separate visual neurons, and parallel elementary motion detectors downstream respond selectively to the motion of light or dark edges, often termed ON- and OFF-edges. It remains unknown how and where ON and OFF signals combine to generate reverse-phi motion signals.
View Article and Find Full Text PDFNeural network remodeling underpins the ability to remember life experiences, but little is known about the long-term plasticity of neural populations. To study how the brain encodes episodic events, we used time-lapse two-photon microscopy and a fluorescent reporter of neural plasticity based on an enhanced form of the synaptic activity-responsive element (E-SARE) within the Arc promoter to track thousands of CA1 hippocampal pyramidal cells over weeks in mice that repeatedly encountered different environments. Each environment evokes characteristic patterns of ensemble neural plasticity, but with each encounter, the set of activated cells gradually evolves.
View Article and Find Full Text PDFDetailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion.
View Article and Find Full Text PDFThe paucity of research in areas of greatest clinical need must be addressed urgently. We propose a model of collaboration in an era of information systems and emerging mobile health technology that has had significant success across the UK and has shown early encouraging results in South Africa (SA). We foresee that recent examples of surgical research collaboratives in SA will continue to promote regional, national and international 'hub-and-spoke' models and ultimately increase the South-South collaboration that is urgently needed to diffuse the skills and knowledge required to address the unmet surgical need in sub-Saharan Africa.
View Article and Find Full Text PDFIn order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity.
View Article and Find Full Text PDFMany animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information.
View Article and Find Full Text PDFThe mammalian hippocampus is crucial for episodic memory formation and transiently retains information for about 3-4 weeks in adult mice and longer in humans. Although neuroscientists widely believe that neural synapses are elemental sites of information storage, there has been no direct evidence that hippocampal synapses persist for time intervals commensurate with the duration of hippocampal-dependent memory. Here we tested the prediction that the lifetimes of hippocampal synapses match the longevity of hippocampal memory.
View Article and Find Full Text PDFBackground: Recent years have seen broad changes in postgraduate training with a move toward structured formative and summative evaluation of trainees' competencies using workplace-based assessment (WBA) tools. The fitness for purpose of these instruments in surgery has been much debated. The aim of this study is to explore the evidence underlying the introduction and ongoing use of WBAs in surgical training.
View Article and Find Full Text PDFSighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations.
View Article and Find Full Text PDFOptical approaches for tracking neural dynamics are of widespread interest, but a theoretical framework quantifying the physical limits of these techniques has been lacking. We formulate such a framework by using signal detection and estimation theory to obtain physical bounds on the detection of neural spikes and the estimation of their occurrence times as set by photon counting statistics (shot noise). These bounds are succinctly expressed via a discriminability index that depends on the kinetics of the optical indicator and the relative fluxes of signal and background photons.
View Article and Find Full Text PDFOne approach to super-resolution fluorescence microscopy, termed stochastic localization microscopy, relies on the nanometer scale spatial localization of individual fluorescent emitters that stochastically label specific features of the specimen. The precision of emitter localization is an important determinant of the resulting image resolution but is insufficient to specify how well the derived images capture the structure of the specimen. We address this deficiency by considering the inference of specimen structure based on the estimated emitter locations.
View Article and Find Full Text PDFWound control in laparostomy for the treatment of intra-abdominal hypertension remains challenging and numerous techniques have been described. We report the first UK experience with a new commercially available device specifically designed to facilitate management of the open abdomen. A 44-year-old gentleman presented with a 3-day history of constant severe epigastric pain and associated vomiting.
View Article and Find Full Text PDF