Publications by authors named "James E Ebdon"

Up to 80% of the plastics in the oceans are believed to have been transferred from river networks. Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to periods of flooding. However, the physical controls governing the storage, remobilization and pathways of transfer in fluvial sediments are unknown.

View Article and Find Full Text PDF

Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents.

View Article and Find Full Text PDF

The operation of a health care facility, such as a cholera or Ebola treatment center in an emergency setting, results in the production of pathogen-laden wastewaters that may potentially lead to onward transmission of the disease. The research presented here evaluated the design and operation of a novel treatment system, successfully used by Médecins Sans Frontières in Haiti to disinfect CTC wastewaters in situ, eliminating the need for road haulage and disposal of the waste to a poorly-managed hazardous waste facility, thereby providing an effective barrier to disease transmission through a novel but simple sanitary intervention. The physico-chemical protocols eventually successfully treated over 600 m3 of wastewater, achieving coagulation/flocculation and disinfection by exposure to high pH (Protocol A) and low pH (Protocol B) environments, using thermotolerant coliforms as a disinfection efficacy index.

View Article and Find Full Text PDF

Ultraviolet-B radiation (280-320 nm) has long been associated with the inactivation of microorganisms in the natural environment. Determination of the environmental inactivation kinetics of specific indicator organisms [used as tools in the field of microbial source tracking (MST)] is fundamental to their successful deployment, particularly in geographic regions subject to high levels of solar radiation. Phage infecting Bacteroides fragilis host strain GB124 (B124 phage) have been demonstrated to be highly specific indicators of human fecal contamination, but to date, little is known about their susceptibility to UV-B radiation.

View Article and Find Full Text PDF

Bacterial viruses (bacteriophages) have a key role in shaping the development and functional outputs of host microbiomes. Although metagenomic approaches have greatly expanded our understanding of the prokaryotic virosphere, additional tools are required for the phage-oriented dissection of metagenomic data sets, and host-range affiliation of recovered sequences. Here we demonstrate the application of a genome signature-based approach to interrogate conventional whole-community metagenomes and access subliminal, phylogenetically targeted, phage sequences present within.

View Article and Find Full Text PDF

Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents.

View Article and Find Full Text PDF

Current fecal indicator bacteria (FIB) and emerging microbial source tracking (MST) methods may indicate the presence and even the likely source of water contamination, but they are less effective at determining the potential risk to health from human enteric viruses. This paper investigates the presence of human-specific phages (detected using a low-cost MST method) in municipal wastewaters (MW) and assesses whether they may be used effectively to screen for the likely presence of human adenovirus (HAdV) and norovirus (NoV). The findings demonstrated that all samples positive for HAdV and/or NoV also contained phages infecting Bacteroides GB-124 (mean = 4.

View Article and Find Full Text PDF

This paper describes the isolation of Enterococcus host strains, for potential use as simple bacteriophage (phage)-based microbial source tracking (MST) tools. Presumptive Enterococcus host strains were isolated from cattle feces, raw municipal wastewater, agricultural runoff, and waters impacted by farms or wastewater treatment works (WWTW) in southern England, United Kingdom (UK). All enterococcal host strains (n = 390) were first screened for their ability to detect phage in samples of raw municipal wastewater and fecal material from cattle, pigs, and sheep.

View Article and Find Full Text PDF

In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment.

View Article and Find Full Text PDF