In this paper, we report for the first time the identification and assignments of complex atomic emission spectra of mixed actinide oxides using laser-induced plasma spectroscopy or laser-induced breakdown spectroscopy (LIBS). Preliminary results of LIBS measurements on samples of uranium dioxide (UO2)/plutonium dioxide (PuO2) and UO2/PuO2/americium dioxide (AmO2)/neptunium dioxide (NpO2) simulated fuel pellets (or mixed actinide oxide samples) are reported and discussed. We have identified and assigned >800 atomic emission lines for a UO2/PuO2/AmO2/NpO2 fuel pellet thus far.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2011
The authors have utilized a recently developed compact Raman spectrometer equipped with an 85 mm focal length (f/1.8) Nikon camera lens and a custom mini-ICCD detector at the University of Hawaii for measuring remote Raman spectra of minerals under supercritical CO(2) (Venus chamber, ∼102 atm pressure and 423 K) excited with a pulsed 532 nm laser beam of 6 mJ/pulse and 10 Hz. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10× beam expander to a 1mm spot on minerals located at 2m inside a Venus chamber, it is possible to measure the remote Raman spectra of anhydrous sulfates, carbonates, and silicate minerals relevant to Venus exploration during daytime or nighttime with 10s integration time.
View Article and Find Full Text PDFWe report time-resolved (TR) remote Raman spectra of minerals under supercritical CO(2) (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively.
View Article and Find Full Text PDF