Publications by authors named "James Deye"

Purpose: To produce and maintain a database of National Institutes of Health (NIH) funding of the American Association of Physicists in Medicine (AAPM) members, to perform a top-level analysis of these data, and to make these data (hereafter referred to as the AAPM research database) available for the use of the AAPM and its members.

Methods: NIH-funded research dating back to 1985 is available for public download through the NIH exporter website, and AAPM membership information dating back to 2002 was supplied by the AAPM. To link these two sources of data, a data mining algorithm was developed in Matlab.

View Article and Find Full Text PDF

Background: Clinical testing of new therapeutic interventions requires comprehensive, high-quality preclinical data. Concerns regarding quality of preclinical data have been raised in recent reports. This report examines the data on the interaction of 10 drugs with radiation and provides recommendations for improving the quality, reproducibility, and utility of future studies.

View Article and Find Full Text PDF

Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance.

View Article and Find Full Text PDF

This article provides a summary of presentations focused on critical education and training issues in radiation oncology, radiobiology and medical physics from a workshop conducted as part of the 60th Annual Meeting of the Radiation Research Society held in Las Vegas, NV (September 21-24, 2014). Also included in this synopsis are pertinent comments and concerns raised by audience members, as well as recommendations for addressing ongoing and future challenges.

View Article and Find Full Text PDF

Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment.

View Article and Find Full Text PDF

The purpose of this editorial is to provide a brief history of National Institutes of Health National Cancer Institute (NCI) workshops as related to quantitative imaging within the oncology setting. The editorial will then focus on the recently supported NCI initiatives, including the Quantitative Imaging Network (QIN) initiative and its organizational structure, including planned research goals and deliverables. The publications in this issue of Translational Oncology come from many of the current members of this QIN research network.

View Article and Find Full Text PDF

Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings.

View Article and Find Full Text PDF

In light of the rising worldwide interest in particle therapy, and proton therapy specifically in the United States, the National Cancer Institute (NCI) is being asked more often about funding for such research and facilities. Many of the questions imply that NCI is naive to the exciting possibilities inherent in particle therapies, and thus they wish to encourage NCI to initiate and underwrite such programs. In fact, NCI has a long track record of support for the translation of hadrons from the physics laboratory to the therapy clinic by way of technology development and scientific investigations of physical and biological processes as well as clinical outcomes.

View Article and Find Full Text PDF

Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design.

Methods And Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail.

View Article and Find Full Text PDF

Purpose: The need for international collaboration in cancer clinical trials has grown stronger as we have made progress both in cancer treatment and screening. We sought to identify those efforts already underway which facilitate such collaboration, as well as barriers to greater collaboration.

Methods: We reviewed the collective experiences of many cooperative groups, governmental organizations, nongovernmental organizations, and academic investigators in their work to build international collaboration in cancer clinical trials across multiple disease sites.

View Article and Find Full Text PDF

In December 2006, the Radiation Research Program of the Division of Cancer Treatment and Diagnosis of the National Cancer Institute hosted a workshop intended to address current issues related to advanced radiation therapy technologies, with an eye toward (1) defining the specific toxicities that have limited the success of "conventional" radiation therapy, (2) examining the evidence from phase III studies for the improvements attributed to the advanced technologies in the treatment of several cancers commonly treated with radiation therapy, and (3) determining the opportunities and priorities for further technologic development and clinical trials. The new technologies offer substantial theoretical advantage in radiation dose distributions that, if realized in clinical practice, may help many cancer patients live longer and/or better. The precision of the advanced technologies may allow us to reduce the volume of normal tissue irradiated in the vicinity of the clinical target volume.

View Article and Find Full Text PDF

In 2006, the Radiation Research Program of the Division of Cancer Treatment and Diagnosis of the National Cancer Institute hosted a workshop intended to address current issues related to advanced radiation therapy technologies, with an eye toward (1) defining the specific toxicities that have limited the success of "conventional" radiation therapy, (2) examining the evidence from phase III studies for the improvements attributed to the advanced technologies in the treatment of several cancers commonly treated with radiation therapy, and (3) determining the opportunities and priorities for further technologic development and clinical trials. The new technologies offer substantial theoretical advantage in radiation dose distributions that, if realized in clinical practice, may help many cancer patients live longer and/or better. The precision of the advanced technologies may allow us to reduce the volume of normal tissue irradiated in the vicinity of the clinical target volume.

View Article and Find Full Text PDF

This report summarizes the consensus findings and recommendations emerging from 2007 Symposium, "Quality Assurance of Radiation Therapy: Challenges of Advanced Technology." The Symposium was held in Dallas February 20-22, 2007. The 3-day program, which was sponsored jointly by the American Society for Therapeutic Radiology and Oncology (ASTRO), American Association of Physicists in Medicine (AAPM), and National Cancer Institute (NCI), included >40 invited speakers from the radiation oncology and industrial engineering/human factor communities and attracted nearly 350 attendees, mostly medical physicists.

View Article and Find Full Text PDF

Due to the significant interest in Monte Carlo dose calculations for external beam megavoltage radiation therapy from both the research and commercial communities, a workshop was held in October 2001 to assess the status of this computational method with regard to use for clinical treatment planning. The Radiation Research Program of the National Cancer Institute, in conjunction with the Nuclear Data and Analysis Group at the Oak Ridge National Laboratory, gathered a group of experts in clinical radiation therapy treatment planning and Monte Carlo dose calculations, and examined issues involved in clinical implementation of Monte Carlo dose calculation methods in clinical radiotherapy. The workshop examined the current status of Monte Carlo algorithms, the rationale for using Monte Carlo, algorithmic concerns, clinical issues, and verification methodologies.

View Article and Find Full Text PDF