Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are indispensable for non-image-forming visual responses that sustain under prolonged illumination. For sustained signaling of ipRGCs, the melanopsin photopigment must continuously regenerate. The underlying mechanism is unknown.
View Article and Find Full Text PDFDifluoroboron β-diketonate poly(lactic acid) materials exhibit both fluorescence (F) and oxygen sensitive room-temperature phosphorescence (RTP). Introduction of halide heavy atoms (Br and I) is an effective strategy to control the oxygen sensitivity in these materials. A series of naphthyl-phenyl (nbm) dye derivatives with hydrogen, bromide and iodide substituents were prepared for comparison.
View Article and Find Full Text PDFLifetime-based oxygen imaging is useful in many biological applications but instrumentation can be stationary, expensive, and complex. Herein, we present a portable, cost effective, simple alternative with high spatiotemporal resolution that uses a complementary metal oxide silicon (CMOS) camera to measure oxygen sensitive lifetimes on the millisecond scale. We demonstrate its compatibility with difluoroboron β-diketonate poly(lactic acid) (BFbdkPLA) polymers which are nontoxic and exhibit long-lived oxygen sensitive phosphorescence.
View Article and Find Full Text PDFPurely organic materials with room-temperature phosphorescence (RTP) are currently under intense investigation because of their potential applications in sensing, imaging, and displaying. Inspired by certain organometallic systems, where ligand-localized phosphorescence ((3) π-π*) is mediated by ligand-to-metal or metal-to-ligand charge transfer (CT) states, we now show that donor-to-acceptor CT states from the same organic molecule can also mediate π-localized RTP. In the model system of N-substituted naphthalimides (NNIs), the relatively large energy gap between the NNI-localized (1) π-π* and (3) π-π* states of the aromatic ring can be bridged by intramolecular CT states when the NNI is chemically modified with an electron donor.
View Article and Find Full Text PDFMelanopsin photopigment expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a crucial role in the adaptation of mammals to their ambient light environment through both image-forming and non-image-forming visual responses. The ipRGCs are structurally and functionally distinct from classical rod/cone photoreceptors and have unique properties, including single-photon response, long response latency, photon integration over time, and slow deactivation. We discovered that amino acid sequence features of melanopsin protein contribute to the functional properties of the ipRGCs.
View Article and Find Full Text PDFAggregation-induced emission (AIE) is an important photophysical phenomenon in molecular materials and has found broad applications in optoelectronics, bioimaging, and chemosensing. Currently, the majority of reported AIE-active molecules are based on either propeller-shaped rotamers or donor-acceptor molecules with strong intramolecular charge-transfer states. Here, we report a new design motif, where a fluorophore is covalently tethered to a quencher, to expand the scope of AIE-active materials.
View Article and Find Full Text PDFPurpose: Human and swine retinas have morphological and functional similarities. In the absence of primate models, the swine is an attractive model to study retinal function and disease, with its cone-rich visual streak, our ability to manipulate their genome, and the differences in susceptibility of rod and cone photoreceptors to disease. We characterized the normal development of cone function and its subsequent decline in a P23H rhodopsin transgenic (TgP23H) miniswine model of autosomal dominant RP.
View Article and Find Full Text PDFA suite of Ru(II) complexes in which one ligand is pH responsive and the other two are varied in an effort to achieve improved photophysics has been synthesized and their potential as pH reporters assessed. The more general purpose of the study was to examine the role of the accessory ligands in heteroleptic reporter complexes and the degree to which such ligands can affect the performance of luminescent reporters. For this suite of complexes, judicious choice of the accessory ligand can alter both the pK(a)* and the dynamic range of response.
View Article and Find Full Text PDFA simple phosphoroscope with no moving parts is described. In one scan the total luminescence, the long-lived phosphorescence, and the short-lived fluorescence can be determined. A 50% duty cycle excitation from a diode laser is used to excite the sample, and from the digitized waveform the phosphorescence is extracted from the off period, the total emission from the full cycle, and the fluorescence from the on period corrected for the phosphorescence contribution.
View Article and Find Full Text PDFThe synthesis of some heteroleptic, cyclometalated iridium(III) complexes is described. The utility of these [Ir(ppy)(2)(N-N)]Cl (ppy = 2-phenylpyridine and N-N = substituted bipyridine, biquinoline, or phenanthroline) complexes as luminescence-based sensors is assessed. The emission intensity of an Ir(III) complex featuring the 3,3'-H(n)dcbpy ligand (H(n)dcbpy = dicarboxylic acid-2,2'-bipyridine; n = 0,1,2 to indicate deprotonated, mono- and diprotonated species, respectively) is seen to increase in the presence of Pb(II).
View Article and Find Full Text PDFThe balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses.
View Article and Find Full Text PDFA suite of luminescent Re(I) complexes has been prepared whose emissive properties are responsive to the probe's local environment. These complexes were embedded in a series of chemically similar polymers whose room temperature rigidity varied over a significant range. It is shown that the degree of local rigidity experienced by the embedded complexes significantly alters the observed emission in terms of both spectra and lifetime.
View Article and Find Full Text PDFDeveloping amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2010
Adult neurogenesis occurs in mammals and provides a mechanism for continuous neural plasticity in the brain. However, little is known about the molecular mechanisms regulating hippocampal neural progenitor cells (NPCs) and whether their fate can be pharmacologically modulated to improve neural plasticity and regeneration. Here, we report the characterization of a small molecule (KHS101) that selectively induces a neuronal differentiation phenotype.
View Article and Find Full Text PDFEfficient and stable quenching of electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II) by oxidizing ferrocene methanol (FcMeOH) at the electrode is reported. Bimolecular energy or electron transfer between Ru(bpy)(3)(2+*) and ferrocenium (Fc(+)), the oxidized species of Fc, along with suppression of radical reactions is suggested as the mechanism for quenching ECL. Fc shows more efficient quenching of ECL compared with the known quenchers phenol and 1,1-dimethyl-4,4'-bipyridine dication (MV(2+)).
View Article and Find Full Text PDF