Publications by authors named "James D Thorpe"

Recent findings in cell biology have rekindled interest in Z-DNA, the left-handed helical form of DNA. We report here that two minimally modified nucleosides, 2'F-araC and 2'F-riboG, induce the formation of the Z-form under low ionic strength. We show that oligomers entirely made of these two nucleosides exclusively produce left-handed duplexes that bind to the Zα domain of ADAR1.

View Article and Find Full Text PDF

While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications. In medicine, antisense oligonucleotides (ASOs), siRNAs, and therapeutic aptamers are explored as potent targeted treatment and diagnostic modalities, while in the technological field oligonucleotides have found use in new materials, catalysis, and data storage. The use of natural oligonucleotides limits the possible chemical functionality of resulting technologies while inherent shortcomings, such as susceptibility to nuclease degradation, provide obstacles to their application.

View Article and Find Full Text PDF

We demonstrate the first mechanochemical synthesis of DNA fragments by ball milling, enabling the synthesis of oligomers of controllable sequence and length using multi-step, one-pot reactions, without bulk solvent or the need to isolate intermediates. Mechanochemistry allowed for coupling of phosphoramidite monomers to the 5'-hydroxyl group of nucleosides, iodine/water oxidation of the resulting phosphite triester linkage, and removal of the 5'-dimethoxytrityl (DMTr) protecting group in situ in good yields (up to 60 % over three steps) to produce DNA dimers in a one-pot manner. H-Phosphonate chemistry under milling conditions enabled coupling and protection of the H-phosphonate linkage, as well as removal of the 5'-DMTr protecting group in situ, enabling a one-pot process with good yields (up to 65 % over three steps, or ca.

View Article and Find Full Text PDF