Publications by authors named "James D Stone"

Background: Silene vulgaris (bladder campion) is a gynodioecious species existing as two genders - male-sterile females and hermaphrodites. Cytoplasmic male sterility (CMS) is generally encoded by mitochondrial genes, which interact with nuclear fertility restorer genes. Mitochondrial genomes of this species vary in DNA sequence, gene order and gene content.

View Article and Find Full Text PDF

Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results.

View Article and Find Full Text PDF

Cytoplasmic male sterility (CMS) is a widespread phenomenon in flowering plants caused by mitochondrial (mt) genes. CMS genes typically encode novel proteins that interfere with mt functions and can be silenced by nuclear fertility-restorer genes. Although the molecular basis of CMS is well established in a number of crop systems, our understanding of it in natural populations is far more limited.

View Article and Find Full Text PDF

Hybrid seed production in rice relies on cytoplasmic male sterility (CMS) induced by specific mitochondrial proteins, whose deleterious effects are suppressed by nuclear Restorer of Fertility (RF) genes. The majority of RF proteins belong to a specific clade of the RNA-binding pentatricopeptide repeat protein family. We have characterised 'restorer-of-fertility-like' (RFL) sequences from 13 Oryza genomes and the Brachypodium distachyon genome.

View Article and Find Full Text PDF

Background: Species within the angiosperm genus Silene contain the largest mitochondrial genomes ever identified. The enormity of these genomes (up to 11 Mb in size) appears to be the result of increased non-coding DNA, which represents >99 % of the genome content. These genomes are also fragmented into dozens of circular-mapping chromosomes, some of which contain no identifiable genes, raising questions about if and how these 'empty' chromosomes are maintained by selection.

View Article and Find Full Text PDF

Background: The species of Utricularia attract attention not only owing to their carnivorous lifestyle, but also due to an elevated substitution rate and a dynamic evolution of genome size leading to its dramatic reduction. To better understand the evolutionary dynamics of genome size and content as well as the great physiological plasticity in this mostly aquatic carnivorous genus, we analyzed the transcriptome of Utricularia vulgaris, a temperate species with well characterized physiology and ecology. We compared its transcriptome, namely gene content and overall transcript profile, with a previously described transcriptome of Utricularia gibba, a congener possessing one of the smallest angiosperm genomes.

View Article and Find Full Text PDF

We review current studies of plant mitochondrial transcriptomes performed by RNA-seq, highlighting methodological challenges unique to plant mitochondria. We propose ways to improve read mapping accuracy and sensitivity such as modifying a reference genome at RNA editing sites, using splicing- and ambiguity-competent aligners, and masking chloroplast- or nucleus-derived sequences. We also outline modified RNA-seq methods permitting more accurate detection and quantification of partially edited sites and the identification of transcription start sites on a genome-wide scale.

View Article and Find Full Text PDF

In retrospective studies the range of motion of the knee is gathered from existing clinical notes or databases. This study aims to assess the validity of this retrospective data. The range of motion of 48 patients was assessed using a goniometer and compared to that entered in the patient notes by the examiner during a routine clinical examination, without the examiner being aware.

View Article and Find Full Text PDF