Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.
View Article and Find Full Text PDFTwo novel cyclometallated iridium(III) complexes have been prepared with one bidentate or two monodentate imidazole-based ligands, 1 and 2, respectively. The complexes showed intense emission with long lifetimes of the excited state. Femtosecond transient absorption experiments established the nature of the lowest excited state as IL state.
View Article and Find Full Text PDFSinglet fission and triplet-triplet annihilation represent two highly promising ways of increasing the efficiency of photovoltaic devices. Both processes are believed to be mediated by a biexcitonic triplet-pair state, (TT). Recently however, there has been debate over the role of (TT) in triplet-triplet annihilation.
View Article and Find Full Text PDFNovel molecular Re and Mn tricarbonyl complexes bearing a bipyridyl ligand functionalised with sterically hindering substituents in the 6,6'-position, [M(HPEAB)(CO)3(X)] (M/X = Re/Cl, Mn/Br; HPEAB = 6,6'-{N-(4-hexylphenyl)-N(ethyl)-amido}-2,2'-bipyridine) have been synthesised, fully characterised including by single crystal X-ray crystallography, and their propensity to act as catalysts for the electrochemical and photochemical reduction of CO2 has been established. Controlled potential electrolysis showed that the catalysts are effective for electrochemical CO2-reduction, yielding CO as the product (in MeCN for the Re-complex, in 95 : 5 (v/v) MeCN : H2O mixture for the Mn-complex). The recyclability of the catalysts was demonstrated through replenishment of CO2 within solution.
View Article and Find Full Text PDFA ligand skeleton combining a 1,10-phenanthroline (phen) binding site and one or two heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru·M and Ru·M2 complexes which have been evaluated for their cell imaging, relaxivity, and photophysical properties. In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites are occupied by a secondary metal ion M which is either a lanthanide [Gd(iii), Nd(iii), Yb(iii)] or another d-block ion [Zn(ii), Mn(ii)]. When M = Gd(iii) or Mn(ii) these ions provide the complexes with a high relaxivity for water; in the case of Ru·Gd and Ru·Gd2 the combination of high water relaxivity and 3MLCT phosphorescence from the Ru(ii) unit provides the possibility of two different types of imaging modality in a single molecular probe.
View Article and Find Full Text PDF