Recent work across species has shown that midbrain dopamine neurons signal not only errors in the prediction of reward value but also in the prediction of value-neutral sensory features. To support learning of associative structures in downstream areas, identity prediction errors (iPEs) should signal specific information about the mis-predicted outcome. Here, we used pattern-based analysis of functional magnetic resonance imaging (fMRI) data acquired during reversal learning to characterize the information content of iPE responses in the human midbrain.
View Article and Find Full Text PDFMental representations of stimuli that are not physically present are critical for a range of cognitive capacities, including perception, memory, and learning. Overly robust mental representations, however, can contribute to hallucinations in healthy individuals and those diagnosed with psychotic illness. Measuring the strength of mental representations can thus provide insight into how the contents of the mind influence both adaptive and maladaptive behaviors.
View Article and Find Full Text PDFBehav Neurosci
April 2021
The orbitofrontal cortex (OFC) plays a prominent role in signaling reward expectations. Two important features of rewards are their value (how good they are) and their specific identity (what they are). Whereas research on OFC has traditionally focused on reward value, recent findings point toward a pivotal role of reward identity in understanding OFC signaling and its contribution to behavior.
View Article and Find Full Text PDFWhen direct experience is unavailable, animals and humans can imagine or infer the future to guide decisions. Behavior based on direct experience versus inference may recruit partially distinct brain circuits. In rodents, the orbitofrontal cortex (OFC) contains neural signatures of inferred outcomes, and OFC is necessary for behavior that requires inference but not for responding driven by direct experience.
View Article and Find Full Text PDFCurr Opin Behav Sci
April 2021
Although it is widely accepted that the orbitofrontal cortex (OFC) is important for decision making, its precise contribution to behavior remains a topic of debate. While many loss of function experiments have been conducted in animals, causal studies of human OFC function are relatively scarce. This review discusses recent causal investigations into the human OFC, with an emphasis on advances in network-based brain stimulation approaches to indirectly perturb OFC function.
View Article and Find Full Text PDFOutcome-guided behavior requires knowledge about the current value of expected outcomes. Such behavior can be isolated in the reinforcer devaluation task, which assesses the ability to infer the current value of specific rewards after devaluation. Animal lesion studies demonstrate that orbitofrontal cortex (OFC) is necessary for normal behavior in this task, but a causal role for human OFC in outcome-guided behavior has not been established.
View Article and Find Full Text PDFDopamine neurons respond to errors in predicting value-neutral sensory information. These data, combined with causal evidence that dopamine transients support sensory-based associative learning, suggest that the dopamine system signals a multidimensional prediction error. Yet such complexity is not evident in the activity of individual neurons or population averages.
View Article and Find Full Text PDFSleep deprivation has marked effects on food intake, shifting food choices toward energy-dense options. Here we test the hypothesis that neural processing in central olfactory circuits, in tandem with the endocannabinoid system (ECS), plays a key role in mediating this relationship. We combined a partial sleep-deprivation protocol, pattern-based olfactory neuroimaging, and food intake to test how central olfactory mechanisms alter food intake after sleep deprivation.
View Article and Find Full Text PDFSearching for food, friends, and mates often begins with an airborne scent. Importantly, odor concentration rises with physical proximity to an odorous source, suggesting a framework for orienting within olfactory landscapes to optimize behavior. Here, we created a two-dimensional odor space composed purely of odor stimuli to model how a navigator encounters smells in a natural environment.
View Article and Find Full Text PDFThe firing of dopaminergic midbrain neurons is thought to reflect prediction errors (PE) that depend on the difference between the value of expected and received rewards. However, recent work has demonstrated that unexpected changes in value-neutral outcome features, such as identity, can evoke similar responses. It remains unclear whether the magnitude of these identity PEs scales with the perceptual dissimilarity of expected and received rewards, or whether they are independent of perceptual similarity.
View Article and Find Full Text PDFThere is general consensus that dopaminergic midbrain neurons signal reward prediction errors, computed as the difference between expected and received reward value. However, recent work in rodents shows that these neurons also respond to errors related to inferred value and sensory features, indicating an expanded role for dopamine beyond learning cached values. Here we utilize a transreinforcer reversal learning task and functional magnetic resonance imaging (fMRI) to test whether prediction error signals in the human midbrain are evoked when the expected identity of an appetitive food odor reward is violated, while leaving value matched.
View Article and Find Full Text PDFGoal-directed behavior is sensitive to the current value of expected outcomes. This requires independent representations of specific rewards, which have been linked to orbitofrontal cortex (OFC) function. However, the mechanisms by which the human brain updates specific goals on the fly, and translates those updates into choices, have remained unknown.
View Article and Find Full Text PDFPerceptually similar stimuli often predict vastly different outcomes, requiring the brain to maintain specific associations in the face of potential ambiguity. This could be achieved either through local changes in stimulus representations, or through modulation of functional connections between stimulus-coding and outcome-coding regions. Here we test these competing hypotheses using classical conditioning of perceptually similar odours in the context of human fMRI.
View Article and Find Full Text PDFDistributed neural activity patterns are widely proposed to underlie object identification and categorization in the brain. In the olfactory domain, pattern-based representations of odor objects are encoded in piriform cortex. This region receives both afferent and associative inputs, though their relative contributions to odor perception are poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2015
Nervous systems must encode information about the identity of expected outcomes to make adaptive decisions. However, the neural mechanisms underlying identity-specific value signaling remain poorly understood. By manipulating the value and identity of appetizing food odors in a pattern-based imaging paradigm of human classical conditioning, we were able to identify dissociable predictive representations of identity-specific reward in orbitofrontal cortex (OFC) and identity-general reward in ventromedial prefrontal cortex (vmPFC).
View Article and Find Full Text PDFMost real-world odors are complex mixtures of distinct molecular components. Olfactory systems can adopt different strategies to contend with this stimulus complexity. In elemental processing, odor perception is derived from the sum of its parts; in configural processing, the parts are integrated into unique perceptual wholes.
View Article and Find Full Text PDFSleep can strengthen memory for emotional information, but whether emotional memories can be specifically targeted and modified during sleep is unknown. In human subjects who underwent olfactory contextual fear conditioning, re-exposure to the odorant context in slow-wave sleep promoted stimulus-specific fear extinction, with parallel reductions of hippocampal activity and reorganization of amygdala ensemble patterns. Thus, fear extinction may be selectively enhanced during sleep, even without re-exposure to the feared stimulus itself.
View Article and Find Full Text PDFOngoing sensory input is critical for shaping internal representations of the external world. Conversely, a lack of sensory input can profoundly perturb the formation of these representations. The olfactory system is particularly vulnerable to sensory deprivation, owing to the widespread prevalence of allergic, viral and chronic rhinosinusitis, but how the brain encodes and maintains odor information under such circumstances remains poorly understood.
View Article and Find Full Text PDFBackground: Uncertainty shapes our perception of the world and the decisions we make. Two aspects of uncertainty are commonly distinguished: uncertainty in previously acquired knowledge (prior) and uncertainty in current sensory information (likelihood). Previous studies have established that humans can take both types of uncertainty into account, often in a way predicted by Bayesian statistics.
View Article and Find Full Text PDFUnderstanding how the human brain translates sensory impressions into conscious percepts is a key challenge of neuroscience research. Work in this area has overwhelmingly centered on the conscious experience of vision at the exclusion of the other senses--in particular, smell. We hypothesized that the orbitofrontal cortex (OFC) is a central substrate for olfactory conscious experience because of its privileged physiological role in odor processing.
View Article and Find Full Text PDFPatients with early-stage Alzheimer's disease exhibit perceptual deficits in odour identification, often before the appearance of overt memory loss. This impairment coincides with the initial accumulation of pathological lesions in limbic olfactory brain regions. Although these data imply that odour stimuli may be effectively used as biological probes of limbic dysfunction, the precise neural mechanisms underlying the olfactory deficits in early Alzheimer's disease remain poorly understood.
View Article and Find Full Text PDFEfficient recognition of odorous objects universally shapes animal behavior and is crucial for survival. To distinguish kin from nonkin, mate from nonmate and food from nonfood, organisms must be able to create meaningful perceptual representations of odor qualities and categories. It is currently unknown where and in what form the brain encodes information about odor quality.
View Article and Find Full Text PDFIt is widely assumed that the thalamus is functionally irrelevant for the sense of smell. Although animal studies suggest that the mediodorsal (MD) thalamus links primary olfactory (piriform) cortex to olfactory neocortical projection sites in orbitofrontal cortex (OFC), this transthalamic route is regarded to be inconsequential, particularly compared with a direct monosynaptic pathway linking piriform cortex and OFC. In this study, we combined functional magnetic resonance imaging with novel effective connectivity techniques to measure attention-dependent network coherence within direct (nonthalamic) and indirect (transthalamic) olfactory pathways.
View Article and Find Full Text PDFLearning to associate sensory cues with threats is critical for minimizing aversive experience. The ecological benefit of associative learning relies on accurate perception of predictive cues, but how aversive learning enhances perceptual acuity of sensory signals, particularly in humans, is unclear. We combined multivariate functional magnetic resonance imaging with olfactory psychophysics to show that initially indistinguishable odor enantiomers (mirror-image molecules) become discriminable after aversive conditioning, paralleling the spatial divergence of ensemble activity patterns in primary olfactory (piriform) cortex.
View Article and Find Full Text PDFObjectives: Diffusion tensor magnetic resonance imaging (DT-MRI) assesses the integrity of white matter (WM) tracts in the brain. Children with bipolar disorder (BPD) may have WM abnormalities that precede illness onset. To more fully examine this possibility, we scanned children with DSM-IV BPD and compared them to healthy peers and children at risk for BPD (AR-BPD), defined as having a first-degree relative with the disorder.
View Article and Find Full Text PDF