Publications by authors named "James D Hoerter"

What is the cellular origin of melanoma? What role do melanocyte stem cells (MSC) and other melanocyte precursors play in the development of melanoma? Are MSCs and other latent melanocyte precursors more susceptible to solar radiation? These and many other questions can be very effectively addressed using the zebrafish model. Zebrafish have a robust regenerative capability, permitting the study of how MSCs are regulated and recruited at specific times and places to generate the pigment pattern following fin amputation or melanocyte ablation. They can be used to determine the effects of environmental radiation on the proliferation, survival, repair, and differentiation of MSCs.

View Article and Find Full Text PDF

Recent studies suggest that extrafollicular dermal melanocyte stem cells (MSCs) persist after birth in the superficial nerve sheath of peripheral nerves and give rise to migratory melanocyte precursors when replacements for epidermal melanocytes are needed on the basal epidermal layer of the skin. If a damaged MSC or melanocyte precursor can be shown to be the primary origin of melanoma, targeted identification and eradication of it by antibody-based therapies will be the best method to treat melanoma and a very effective way to prevent its recurrence. Transcription factors and signaling pathways involved in MSC self-renewal, expansion and differentiation are reviewed.

View Article and Find Full Text PDF

During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm) and UVB (315-400 nm) spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR) and tanning-bed radiation (TBR) on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses.

View Article and Find Full Text PDF

When bacterial cells are stressed by a change in the environment, they respond by changing the activity of enzymes at both the transcriptional and post-transcriptional levels. The UVA component (400-315 nm) of solar radiation reaching the Earth's surface is one of the most common stresses encountered by bacteria in their environment. Bacteria have evolved various antioxidant defense systems to increase survival when subjected to the deleterious effects of UVA irradiation.

View Article and Find Full Text PDF

In Escherichia coli, Deltafur (ferric uptake regulator) mutants are hypersensitive to various oxidative agents, including UVA radiation (400-315 nm). Studies suggest that UVA radiation mediates its biological effects on bacteria via oxidative mechanisms that lead to reactive oxygen species, including the superoxide anion radical (O2.-), hydroxyl radical (HO.

View Article and Find Full Text PDF