Metallo-beta-lactamases (mbetals) are zinc-dependent enzymes that hydrolyze a wide range of beta-lactam antibiotics. The mbetal active site features an invariant Asp-120 that ligates one of the two metal ions (Zn2) and a metal-bridging water/hydroxide (Wat1). Previous studies show that substitutions at Asp-120 dramatically affect mbetal activity, but no consensus exists as to its role in beta-lactam turnover.
View Article and Find Full Text PDFIn an effort to probe the structure of the reaction intermediate of metallo-beta-lactamase L1 when reacted with nitrocefin and other beta-lactams, time-dependent absorption and rapid-freeze-quench (RFQ) EPR spectra were obtained using the Co(II)-substituted form of the enzyme. When using nitrocefin as the substrate, time-dependent absorption spectra demonstrate that Co(II)-substituted L1 utilizes a reaction mechanism, similar to that of the native Zn(II) enzyme, in which a short-lived intermediate forms. RFQ-EPR spectra of this intermediate demonstrate that the binding of substrate results in a change in the electronic properties of one or both of the Co(II)'s in the enzyme that is consistent with a change in the coordination sphere of this metal ion.
View Article and Find Full Text PDFA structural feature shared by the metallo-beta-lactamases is a flexible loop of amino acids that extends over their active sites and that has been proposed to move during the catalytic cycle of the enzymes, clamping down on substrate. To probe the movement of this loop (residues 152-164), a site-directed mutant of metallo-beta-lactamase L1 was engineered that contained a Trp residue on the loop to serve as a fluorescent probe. It was necessary first, however, to evaluate the contribution of each native Trp residue to the fluorescence changes observed during the catalytic cycle of wild-type L1.
View Article and Find Full Text PDFMetallo-beta-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containing, hydrolytic enzymes; particularly those with a beta-lactamase fold. In an effort to probe the catalytic and metal-binding role of Asp-120 in L1, three site-directed mutants (D120C, D120N, and D120S) were prepared and characterized using metal analyses, circular dichroism spectroscopy, and presteady-state and steady-state kinetics.
View Article and Find Full Text PDFBackground: The metallo-beta-lactamases are Zn(II)-containing enzymes that hydrolyze the beta-lactam bond in penicillins, cephalosporins, and carbapenems and are involved in bacterial antibiotic resistance. There are at least 20 distinct organisms that produce a metallo-beta-lactamase, and these enzymes have been extensively studied using X-ray crystallographic, computational, kinetic, and inhibition studies; however, much is still unknown about how substrates bind and the catalytic mechanism. In an effort to probe substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia, nine site-directed mutants of L1 were prepared and characterized using metal analyses, CD spectroscopy, and pre-steady state and steady state kinetics.
View Article and Find Full Text PDF