Publications by authors named "James D Clarkson"

Controlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh.

View Article and Find Full Text PDF
Article Synopsis
  • Electric-field control of magnetism in multiferroics like BiFeO is important but under-researched, particularly in understanding how strain affects magnetic order in BiFeO films.
  • In (110)-oriented BiFeO films, strain can significantly change the orientation of the antiferromagnetic-spin axis without majorly impacting the polarization structure, leading to deviations from typical relationships in magnetic properties.
  • The relationship between the antiferromagnetic-spin axis and ferromagnet CoFe allows for effective control of magnetic anisotropy in ferromagnets through strategic manipulation of the strain in the BiFeO films.
View Article and Find Full Text PDF

A strain-driven orthorhombic (O) to rhombohedral (R) phase transition is reported in La-doped BiFeO thin films on silicon substrates. Biaxial compressive epitaxial strain is found to stabilize the rhombohedral phase at La concentrations beyond the morphotropic phase boundary (MPB). By tailoring the residual strain with film thickness, we demonstrate a mixed O/R phase structure consisting of O phase domains measuring tens of nanometers wide within a predominant R phase matrix.

View Article and Find Full Text PDF

A wealth of fascinating phenomena have been discovered at the BiFeO domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO films.

View Article and Find Full Text PDF

Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications.

View Article and Find Full Text PDF

Magnetic anisotropy (MA) is one of the most important material properties for modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e.

View Article and Find Full Text PDF

Ferroelectrically driven nonvolatile memory is demonstrated by interfacing 2D semiconductors and ferroelectric thin films, exhibiting superior memory performance comparable to existing thin-film ferroelectric field-effect transistors. An optical memory effect is also observed with large modulation of photoluminescence tuned by the ferroelectric gating, potentially finding applications in optoelectronics and valleytronics.

View Article and Find Full Text PDF

Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature.

View Article and Find Full Text PDF

We report on the magnetic structure and ordering of hexagonal LuFeO_{3} films of variable thickness grown by molecular-beam epitaxy on YSZ (111) and Al_{2}O_{3} (0001) substrates. These crystalline films exhibit long-range structural uniformity dominated by the polar P6_{3}cm phase, which is responsible for the paraelectric to ferroelectric transition that occurs above 1000 K. Using bulk magnetometry and neutron diffraction, we find that the system orders into a ferromagnetically canted antiferromagnetic state via a single transition below 155 K regardless of film thickness, which is substantially lower than that previously reported in hexagonal LuFeO_{3} films.

View Article and Find Full Text PDF

Demand for visualizing nanoscale dynamics in biological and advanced materials continues to drive the development of subdiffraction optical probes. While many strategies employ scanning tips for this purpose, we instead exploit a focused electron beam to create scannable nanoscale optical excitations in an epitaxially grown thin-film of cerium-doped yttrium aluminum perovskite, whose cathodoluminescence response is bright, robust, and spatially resolved to 18 nm. We also demonstrate lithographic patterning of the film's luminescence at the nanoscale.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: