Publications by authors named "James D Bortner"

Recent studies suggest that low vitamin D-binding protein (VDBP aka group-specific complement or Gc) concentrations may be linked with inflammatory-mediated conditions, including asthma, chronic obstructive pulmonary disease, and cancer. However, these studies may be confounded by substantial racial and ethnic or genetic differences. The purpose of this study was to test the hypothesis that circulating VDBP concentrations are significantly associated with genetic ancestry.

View Article and Find Full Text PDF

Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases).

View Article and Find Full Text PDF

Gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), graft-versus-host disease (GVHD), and inflammatory bowel diseases such as ulcerative colitis and Crohn's disease are common human gastrointestinal diseases that share inflammation as a key driver for their development. A general outcome resulting from these chronic inflammatory conditions is increased oxidative stress. Oxidative stress is caused by the generation of reactive oxygen and nitrogen species that are part of the normal inflammatory response, but are also capable of damaging cellular DNA, protein, and organelles.

View Article and Find Full Text PDF

We used a proteomic approach to gain insights into the mechanisms of protection at the protein level by a high n-3:n-6 ratio in the absence and presence of Tamoxifen. Four groups were treated with 1-methyl-1-nitrosourea (MNU) and fed the following diets with varied n-3:n-6 ratios; group 1 = 1:1; groups 2 and 3 = 10:1 and 25:1, respectively; group 4: (25:1) plus Tamoxifen (1 mg/kg diet). The plasma from six rats/group was pooled and analyzed with the isobaric tags for relative and absolute quantitation method; 148 proteins were identified with 95% confidence by ProteinPilot 4.

View Article and Find Full Text PDF

Background: Aging-related changes in important cellular pathways in the prostate may promote a permissive environment for an increased risk for prostatic disease development such as prostate cancer. Our objectives were to examine for such changes, by systematically determining the effects of growth and development and aging on proteomic profiles in different lobes of the rat prostate.

Methods: Prostate lobes (dorsolateral lobe, DL and ventral lobe, VL) were obtained from male Fisher rats of various ages representing young (4 months), mature (12 months), old (18 months), and very old (24 months).

View Article and Find Full Text PDF

Biomarkers in noninvasive fluids indicative of cigarette smoke's effects are urgently needed. In this pilot study, we utilized the proteomic approach, isobaric Tags for Relative and Absolute Quantitation (iTRAQ), to identify differentially expressed plasma proteins in healthy cigarette smokers compared to healthy nonsmokers; select proteins were further confirmed by immunoblot analysis. Significant, differentially expressed proteins identified in the plasma separated subjects based on their condition as smokers or nonsmokers.

View Article and Find Full Text PDF

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen in the A/J mouse model. Here we identified and validated, using two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry and immunoblotting, proteins that are differentially expressed in the lungs of mice treated with NNK versus vehicle control treatment. We also determined whether protein levels in the lungs of NNK-treated mice could be further modulated by the chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC).

View Article and Find Full Text PDF