Background: Delayed emergence from general anaesthesia, opioid-induced sedation, and opioid-induced respiratory depression is associated with perioperative complications. We characterised the preclinical effects of the orexin receptor 2 (OX2R)-selective agonist danavorexton (TAK-925) on emergence from anaesthesia and reversal of fentanyl-induced sedation, respiratory depression, and analgesia.
Methods: Emergence from isoflurane- or propofol-induced anaesthesia and fentanyl-induced sedation were investigated by righting reflex, rotarod, and electroencephalography in rats or monkeys.
Supercharged proteins are a class of engineered or naturally occurring proteins with unusually high positive or negative net theoretical charge. Both supernegatively and superpositively charged proteins exhibit a remarkable ability to withstand thermally or chemically induced aggregation. Superpositively charged proteins are also able to penetrate mammalian cells.
View Article and Find Full Text PDFWe discovered a class of naturally occurring human proteins with unusually high net positive charge that can potently deliver proteins in functional form into mammalian cells both in vitro and also in murine retina, pancreas, and white adipose tissues in vivo. These findings represent diverse macromolecule delivery agents for in vivo applications, and also raise the possibility that some of these human proteins may penetrate cells as part of their native biological functions.
View Article and Find Full Text PDFThe inability of proteins to potently penetrate mammalian cells limits their usefulness as tools and therapeutics. When fused to superpositively charged GFP, proteins rapidly (within minutes) entered five different types of mammalian cells with potency up to approximately 100-fold greater than that of corresponding fusions with known protein transduction domains (PTDs) including Tat, oligoarginine, and penetratin. Ubiquitin-fused supercharged GFP when incubated with human cells was partially deubiquitinated, suggesting that proteins delivered with supercharged GFP can access the cytosol.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2009
Nucleic acid reagents, including small interfering RNA (siRNA) and plasmid DNA, are important tools for the study of mammalian cells and are promising starting points for the development of new therapeutic agents. Realizing their full potential, however, requires nucleic acid delivery reagents that are simple to prepare, effective across many mammalian cell lines, and nontoxic. We recently described the extensive surface mutagenesis of proteins in a manner that dramatically increases their net charge.
View Article and Find Full Text PDF