Publications by authors named "James C. McWilliams"

In response to a recent challenge to the longstanding practice in modeling large-scale circulations in the atmosphere and ocean that neglects any horizontal component of Earth's gravity-rotation force, this paper demonstrates that a coordinate transformation into geopotential coordinates has no such horizontal force. This framework should be understood as the justification for and, if warranted, the basis for making further refinements to such geophysical models.

View Article and Find Full Text PDF
Article Synopsis
  • Estuaries connect land and ocean, influencing the movement of buoyant materials like plastics and organic matter through complex interactions of river and tidal flows.
  • The study uses simulations and theoretical models to show that tidal currents can retain buoyant particles in estuaries, especially in smaller ones, contrary to the common belief that they mainly flow out to the ocean.
  • Factors such as the width of the estuary and river flow rates significantly impact the retention and export of these materials, helping to predict their behavior in land-sea exchange processes.
View Article and Find Full Text PDF

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood.

View Article and Find Full Text PDF

Climate change is increasing drought severity worldwide. Ocean discharges of municipal wastewater are a target for potable water recycling. Potable water recycling would reduce wastewater volume; however, the effect on mass nitrogen loading is dependent on treatment.

View Article and Find Full Text PDF

A general, variational approach to derive low-order reduced models from possibly non-autonomous systems is presented. The approach is based on the concept of optimal parameterizing manifold (OPM) that substitutes more classical notions of invariant or slow manifolds when the breakdown of "slaving" occurs, i.e.

View Article and Find Full Text PDF

The potential for -nitrosamine impurities in pharmaceutical products presents a challenge for the quality management of medicinal products. -Nitrosamines are considered cohort-of-concern compounds due to the potent carcinogenicity of many of the structurally simple chemicals within this structural class. In the past 2 years, a number of drug products containing certain active pharmaceutical ingredients have been withdrawn or recalled from the market due to the presence of carcinogenic low-molecular-weight ,-dialkylnitrosamine impurities.

View Article and Find Full Text PDF

The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow-fast interactions are central to geophysical fluid dynamics.

View Article and Find Full Text PDF

Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical-biogeochemical model to quantify the link between terrestrial and atmospheric nutrients, organic matter, and carbon inputs and biogeochemical change in the coastal waters of the Southern California Bight.

View Article and Find Full Text PDF
Oceanic Frontogenesis.

Ann Rev Mar Sci

January 2021

Frontogenesis is the fluid-dynamical processes that rapidly sharpen horizontal density gradients and their associated horizontal velocity shears. It is a positive feedback process where the ageostrophic, overturning secondary circulation in the cross-front plane accelerates the frontal sharpening until an arrest occurs through frontal instability and other forms of turbulent mixing. Several well-known types of oceanic frontal phenomena are surveyed, their impacts on oceanic system functioning are assessed, and future research is envisioned.

View Article and Find Full Text PDF

Climate warming is expected to intensify hypoxia in the California Current System (CCS), threatening its diverse and productive marine ecosystem. We analyzed past regional variability and future changes in the Metabolic Index (Φ), a species-specific measure of the environment's capacity to meet temperature-dependent organismal oxygen demand. Across the traits of diverse animals, Φ exhibits strong seasonal to interdecadal variations throughout the CCS, implying that resident species already experience large fluctuations in available aerobic habitat.

View Article and Find Full Text PDF

Oceanic submesoscale currents (SMCs) occur on an scale of 0.1-10 km horizontally and have a large influence on the oceanic variability and on ecosystems. At the mesoscale (10-250 km), oceanic thermal and current feedbacks are known to have a significant influence on the atmosphere and on oceanic dynamics.

View Article and Find Full Text PDF

Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change.

View Article and Find Full Text PDF

Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity.

View Article and Find Full Text PDF

Most of the ocean kinetic energy is contained in the large scale currents and the vigorous geostrophic eddy field, at horizontal scales of order 100 km. To achieve equilibrium the geostrophic currents must viscously dissipate their kinetic energy at much smaller scale. However, geostrophic turbulence is characterized by an inverse cascade of energy towards larger scale, and the pathways of energy toward dissipation are still in question.

View Article and Find Full Text PDF

This article is a perspective on the recently discovered realm of submesoscale currents in the ocean. They are intermediate-scale flow structures in the form of density fronts and filaments, topographic wakes and persistent coherent vortices at the surface and throughout the interior. They are created from mesoscale eddies and strong currents, and they provide a dynamical conduit for energy transfer towards microscale dissipation and diapycnal mixing.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrothermal vent fields in the western Pacific are primarily found along spreading centers in submarine basins near convergent plate boundaries.
  • Larval dispersal, influenced by deep-ocean currents, significantly affects the genetic flow and distribution of vent species, with local connections occurring more often than long-distance dispersal between basins.
  • The study's findings can aid marine ecologists in understanding gene flow in vent populations and assist in creating effective conservation strategies for these unique ecosystems.
View Article and Find Full Text PDF

Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling.

View Article and Find Full Text PDF

Oceanic mesoscale eddies contribute important horizontal heat and salt transports on a global scale. Here we show that eddy transports are mainly due to individual eddy movements. Theoretical and observational analyses indicate that cyclonic and anticyclonic eddies move westwards, and they also move polewards and equatorwards, respectively, owing to the β of Earth's rotation.

View Article and Find Full Text PDF

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal.

View Article and Find Full Text PDF

Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.

View Article and Find Full Text PDF

Climate models exhibit high sensitivity in some respects, such as for differences in predicted precipitation changes under global warming. Despite successful large-scale simulations, regional climatology features prove difficult to constrain toward observations, with challenges including high-dimensionality, computationally expensive simulations, and ambiguity in the choice of objective function. In an atmospheric General Circulation Model forced by observed sea surface temperature or coupled to a mixed-layer ocean, many climatic variables yield rms-error objective functions that vary smoothly through the feasible parameter range.

View Article and Find Full Text PDF

Atmospheric and oceanic computational simulation models often successfully depict chaotic space-time patterns, flow phenomena, dynamical balances, and equilibrium distributions that mimic nature. This success is accomplished through necessary but non-unique choices for discrete algorithms, parameterizations, and coupled contributing processes that introduce structural instability into the model. Therefore, we should expect a degree of irreducible imprecision in quantitative correspondences with nature, even with plausibly formulated models and careful calibration (tuning) to several empirical measures.

View Article and Find Full Text PDF

We report a series of numerical simulations showing that the critical magnetic Reynolds number Rm(c) for the nonhelical small-scale dynamo depends on the Reynolds number Re. Namely, the dynamo is shut down if the magnetic Prandtl number Pr(m)=Rm/Re is less than some critical value Pr(m,c)< approximately 1 even for Rm for which dynamo exists at Pr(m)> or =1. We argue that, in the limit of Re-->infinity, a finite Pr(m,c) may exist.

View Article and Find Full Text PDF