Publications by authors named "James C-G Hombria"

The re-use of genes in new organs forms the base of many evolutionary novelties. A well-characterised case is the recruitment of the posterior spiracle gene network to the Drosophila male genitalia. Here we find that this network has also been co-opted to the testis mesoderm where is required for sperm liberation, providing an example of sequentially repeated developmental co-options.

View Article and Find Full Text PDF

The corpora allata and the prothoracic glands control moulting and metamorphosis in insects. These endocrine glands are specified in the maxillary and labial segments at positions homologous to those forming the trachea in more posterior segments. Glands and trachea can be homeotically transformed into each other suggesting that all three evolved from a metamerically repeated organ that diverged to form glands in the head and respiratory organs in the trunk.

View Article and Find Full Text PDF

During evolution, bilateral animals have experienced a progressive process of cephalization with the anterior concentration of nervous tissue, sensory organs and the appearance of dedicated feeding structures surrounding the mouth. Cephalization has been achieved by the specialization of the unsegmented anterior end of the body (the acron) and the sequential recruitment to the head of adjacent anterior segments. Here we review the key developmental contribution of Hox1-5 genes to the formation of cephalic structures in vertebrates and arthropods and discuss how this evolved.

View Article and Find Full Text PDF

Wings and halteres are homologous flight appendages whose shape differences are controlled by the Ubx transcription factor. Recent research shows how Ubx regulates apical and basal extracellular matrix proteases and their inhibitors to achieve this morphological divergence.

View Article and Find Full Text PDF

Hox proteins belong to a family of transcription factors with similar DNA binding specificities that control animal differentiation along the antero-posterior body axis. Hox proteins are expressed in partially overlapping regions where each one is responsible for the formation of particular organs and structures through the regulation of specific direct downstream targets. Thus, explaining how each Hox protein can selectively control its direct targets from those of another Hox protein is fundamental to understand animal development.

View Article and Find Full Text PDF

The JAK/STAT pathway plays important roles in vertebrate and invertebrate development. The recent cloning and characterisation of the receptor in Drosophila shows that the pathway is conserved across phyla. In this review we describe current knowledge of the pathway and use genome data to discuss what elements are present in Drosophila.

View Article and Find Full Text PDF