Eukaryotes, including the unicellular eukaryotes such as yeasts, employ multiple levels of gene regulation. Regulation of chromatin structure through chromatin compaction cascades, and influenced by transcriptional insulators, might play a role in the coordinated regulation of genes situated at adjacent loci and expressed as a co-regulated cluster. Subtelomeric gene silencing, which has previously been described in the yeast Saccharomyces cerevisiae, is an example of this phenomenon.
View Article and Find Full Text PDFThe cofactor balances in metabolism is of paramount importance in the design of a metabolic engineering strategy and understanding the regulation of metabolism in general. ATP, NAD+ and NADP+ balances are central players linking the various fluxes in central metabolism as well as biomass formation. NADP+ is especially important in the metabolic engineering of yeasts for xylose fermentation, since NADPH is required by most yeasts in the initial step of xylose utilisation, including the fast-growing Kluyveromyces marxianus.
View Article and Find Full Text PDFWe investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights.
View Article and Find Full Text PDFBackground: The cladodes of Opuntia ficus-indica (prickly pear cactus) have a low protein content; for use as a balanced feed, supplementation with other protein sources is therefore desirable. We investigated protein enrichment by cultivation of the yeasts Candida utilis and Kluyveromyces marxianus in an enzymatic hydrolysate of the cladode biomass.
Results: Dilute acid pretreatment and enzymatic hydrolysis of sun-dried cladodes resulted in a hydrolysate containing (per litre) 45.
The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses.
View Article and Find Full Text PDFThe physiological role and possible functional substitution of each of the five alcohol dehydrogenase (Adh) isozymes in Saccharomyces cerevisiae were investigated in five quadruple deletion mutants designated strains Q1-Q5, with the number indicating the sole intact ADH gene. Their growth in aerobic batch cultures was characterised in terms of kinetic and stoichiometric parameters. Cultivation with glucose or ethanol as carbon substrate revealed that Adh1 was the only alcohol dehydrogenase capable of efficiently catalysing the reduction of acetaldehyde to ethanol.
View Article and Find Full Text PDFFEMS Yeast Res
November 2008
Alcohol dehydrogenases (ADHs) constitute a large family of enzymes responsible for the reversible oxidation of alcohols to aldehydes with the concomitant reduction of NAD(+) or NADP(+). These enzymes have been identified not only in yeasts, but also in several other eukaryotes and even prokaryotes. The ADHs of Saccharomyces cerevisiae have been studied intensively for over half a century.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
June 2008
The growth and product formation kinetics of the bovine pathogen Mannheimia (Pasteurella) haemolytica strain OVI-1 in continuous culture were investigated. The leukotoxin (LKT) concentration and yield on biomass could substantially be enhanced by supplementation of a carbon-limited medium with an amino acid mixture or a mixture of cysteine and glutamine. Acetic acid was a major product, increasing to 1.
View Article and Find Full Text PDFThe effects of cultivation pH and agitation rate on growth and extracellular xylanase production by Aspergillus oryzae NRRL 3485 were investigated in bioreactor cultures using spent sulphite liquor (SSL) and oats spelts xylan as respective carbon substrates. Xylanase production by this fungus was greatly affected by the culture pH, with pH 7.5 resulting in a high extracellular xylanase activity in the SSL-based medium as well as in a complex medium with xylan as carbon substrate.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2005
Xylanase production by seven fungal strains was investigated using concentrated spent sulphite liquor (SSLc), xylan and D: -xylose as carbon substrates. An SSLc-based medium induced xylanase production at varying levels in all of these strains, with Aspergillus oryzae NRRL 3485 and Aspergillus phoenicis ATCC 13157 yielding activities of 164 and 146 U ml(-1), respectively; these values were higher than those obtained on xylan or D: -xylose with the same fungal strains. The highest xylanase activity of 322 U ml(-1) was obtained with Aspergillus foetidus ATCC 14916 on xylan.
View Article and Find Full Text PDF