Voxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings.
View Article and Find Full Text PDFPsychosis has often been linked to abnormal cortical asymmetry, but prior results have been inconsistent. Here, we applied a novel spectral shape analysis to characterize cortical shape asymmetries in patients with early psychosis across different spatial scales. We used the Human Connectome Project for Early Psychosis dataset (aged 16-35), comprising 56 healthy controls (37 males, 19 females) and 112 patients with early psychosis (68 males, 44 females).
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) is widely used to investigate functional coupling (FC) disturbances in a range of clinical disorders. Most analyses performed to date have used group-based parcellations for defining regions of interest (ROIs), in which a single parcellation is applied to each brain. This approach neglects individual differences in brain functional organization and may inaccurately delineate the true borders of functional regions.
View Article and Find Full Text PDFRecent years have seen a surge in the use of diffusion MRI to map connectomes in humans, paralleled by a similar increase in processing and analysis choices. Yet these different steps and their effects are rarely compared systematically. Here, in a healthy young adult population ( = 294), we characterized the impact of a range of analysis pipelines on one widely studied property of the human connectome: its degree distribution.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
December 2023
Background: The cerebral cortex is organized hierarchically along an axis that spans unimodal sensorimotor to transmodal association areas. This hierarchy is often characterized using low-dimensional embeddings, termed gradients, of interregional functional coupling estimates measured with resting-state functional magnetic resonance imaging. Such analyses may offer insights into the pathophysiology of schizophrenia, which has been frequently linked to dysfunctional interactions between association and sensorimotor areas.
View Article and Find Full Text PDFThe anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity.
View Article and Find Full Text PDFVoxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings.
View Article and Find Full Text PDFThe human brain is distinct from those of other species in terms of size, organization, and connectivity. How do structural evolutionary differences drive patterns of neural activity enabling brain function? Here, we combine brain imaging and biophysical modeling to show that the anatomical wiring of the human brain distinctly shapes neural dynamics. This shaping is characterized by a narrower distribution of dynamic ranges across brain regions compared with that of chimpanzees, our closest living primate relatives.
View Article and Find Full Text PDFAsymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets.
View Article and Find Full Text PDFWe used an agent-based model Covasim to assess the risk of sustained community transmission of SARSCoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus. The model was calibrated using the demographics, policies, and interventions implemented in the state. Then, using the calibrated model, we simulated possible epidemic trajectories that could eventuate due to leakage of infected cases with high-transmission variants, during a period without recorded cases of locally acquired infections, known in Australian settings as "zero community transmission".
View Article and Find Full Text PDFA physiologically based three-dimensional (3D) hemodynamic model is developed to predict the experimentally observed blood oxygen level dependent (BOLD) responses versus the cortical depth induced by visual stimuli. Prior 2D approximations are relaxed in order to analyze 3D blood flow dynamics as a function of cortical depth. Comparison of the predictions with experimental data for evoked stimuli demonstrates that the full 3D model performs at least as well as previous approaches while remaining parsimonious.
View Article and Find Full Text PDFSynchronization is a collective mechanism by which oscillatory networks achieve their functions. Factors driving synchronization include the network's topological and dynamical properties. However, how these factors drive the emergence of synchronization in the presence of potentially disruptive external inputs like stochastic perturbations is not well understood, particularly for real-world systems such as the human brain.
View Article and Find Full Text PDFA recent hemodynamic model is extended and applied to simulate and explore the feasibility of detecting ocular dominance (OD) and orientation preference (OP) columns in primary visual cortex by means of functional magnetic resonance imaging (fMRI). The stimulation entails a short oriented bar stimulus being presented to one eye and mapped to cortical neurons with corresponding OD and OP selectivity. Activated neurons project via patchy connectivity to excite other neurons with similar OP in nearby visual fields located preferentially along the direction of stimulus orientation.
View Article and Find Full Text PDF