Background: The conventional lying down position for radiation therapy can be challenging for patients due to pain, swallowing or breathing issues. To provide an alternative upright treatment position for these patients, we have developed a portable rotating radiation therapy platform which integrates with conventional photon treatment machines. The device enables cone-beam computed tomography (CBCT) imaging of patients in an upright position, and the future delivery of therapeutic radiation.
View Article and Find Full Text PDFTo provide an open-source software for repeatable and efficient quantification ofandrelaxation times with the ISMRM/NIST system phantom. Quantitative magnetic resonance imaging (qMRI) biomarkers have the potential to improve disease detection, staging and monitoring of treatment response. Reference objects, such as the system phantom, play a major role in translating qMRI methods into the clinic.
View Article and Find Full Text PDFPurpose: To investigate multiple deep learning methods for automated segmentation (auto-segmentation) of the parotid glands, submandibular glands, and level II and level III lymph nodes on magnetic resonance imaging (MRI). Outlining radiosensitive organs on images used to assist radiation therapy (radiotherapy) of patients with head and neck cancer (HNC) is a time-consuming task, in which variability between observers may directly impact on patient treatment outcomes. Auto-segmentation on computed tomography imaging has been shown to result in significant time reductions and more consistent outlines of the organs at risk.
View Article and Find Full Text PDFRadiomics is a promising technique for discovering image based biomarkers of therapy response in cancer. Reproducibility of radiomics features is a known issue that is addressed by the image biomarker standardisation initiative (IBSI), but it remains challenging to interpret previously published radiomics signatures. This study investigates the reproducibility of radiomics features calculated with two widely used radiomics software packages (IBEX, MaZda) in comparison to an IBSI compliant software package (PyRadiomics).
View Article and Find Full Text PDFA new framework for B insensitive adiabatic pulse design is proposed, denoted Spin Lock Adiabatic Correction (SLAC), which counteracts deviations from ideal behaviour through inclusion of an additional correction component during pulse design. SLAC pulses are theoretically derived, then applied to the design of enhanced BIR-4 and hyperbolic secant pulses to demonstrate practical utility of the new pulses. At 7T, SLAC pulses are shown to improve the flip angle homogeneity compared to a standard adiabatic pulse with validation in both simulations and phantom experiments, under SAR equivalent experimental conditions.
View Article and Find Full Text PDF