Publications by authors named "James C Knight"

A phenanthroline-type ligand containing an annealed 1,2,4-triazine ring was used to prepare novel Ir(III) complexes 3 and 4. The complexes are non-luminescent but show luminogenic behaviour following the inverse electron demand Diels-Alder (IEDDA) reaction with bicyclononyne (BCN) derivatives. It was observed that the complexes react with BCN-C10 faster than the corresponding free ligands.

View Article and Find Full Text PDF

The central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used.

View Article and Find Full Text PDF

Current clinical diagnostic imaging methods for lung metastases are sensitive only to large tumours (1-2 mm cross-sectional diameter), and early detection can dramatically improve treatment. We have previously demonstrated that an antibody-targeted MRI contrast agent based on microparticles of iron oxide (MPIO; 1 μm diameter) enables the imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Using a mouse model of lung metastasis, upregulation of endothelial VCAM-1 expression was demonstrated in micrometastasis-associated vessels but not in normal lung tissue, and binding of VCAM-MPIO to these vessels was evident histologically.

View Article and Find Full Text PDF

Ants are capable of learning long visually guided foraging routes with limited neural resources. The visual scene memory needed for this behaviour is mediated by the mushroom bodies; an insect brain region important for learning and memory. In a visual navigation context, the mushroom bodies are theorised to act as familiarity detectors, guiding ants to views that are similar to those previously learned when first travelling along a foraging route.

View Article and Find Full Text PDF

Click chemistry has become a commonly used synthetic method due to the simplicity, efficiency, and high selectivity of this class of chemical reactions. Since their initial discovery, further click chemistry methods have been identified and added to the toolbox of click chemistry reactions for biomedical applications. However, selecting the most suitable reaction for a specific application is often challenging, as multiple factors must be considered, including selectivity, reactivity, biocompatibility, and stability.

View Article and Find Full Text PDF

Synaptophysin is expressed on fibrogenic hepatic myofibroblasts. C1-3 is a single chain human antibody (scAb) that binds specifically to synaptophysin on hepatic myofibroblasts, providing a targeting vector for novel in vivo imaging agents of chronic liver disease. C1-3 and a negative control scAb, CSBD9, were radiolabelled with zirconium-89 via desferrioxamine chelation to enable non-invasive molecular imaging with positron emission tomography (PET).

View Article and Find Full Text PDF

Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an emerging biomedical optical imaging modality that leverages Cerenkov luminescence, primarily generated by β-emitting radioisotopes, to excite fluorophores that offer near-infrared emissions with optimal tissue penetrance. Dual-functionalized immunoconjugates composed of an antibody, a near-infrared fluorophore, and a β-emitting radioisotope have potential utility as novel SCIFI constructs with high specificity for molecular biomarkers of disease. Here, we report the synthesis and characterization of [Zr]Zr-DFO-trastuzumab-BOD665, a self-excitatory HER2-specific "immunoSCIFI" probe capable of yielding near-infrared fluorescence without external excitation.

View Article and Find Full Text PDF

Many animals use motion vision information to control dynamic behaviors. Predatory animals, for example, show an exquisite ability to detect rapidly moving prey, followed by pursuit and capture. Such target detection is not only used by predators but is also important in conspecific interactions, such as for male hoverflies defending their territories against conspecific intruders.

View Article and Find Full Text PDF

Antibody-based agents are increasingly used as therapeutics and imaging agents, yet are generally restricted to cell surface targets due to inefficient cellular internalisation and endosomal entrapment. Enhanced cell membrane translocation of antibodies can be achieved by the covalent attachment of cell-penetrating peptides, including the HIV-1-derived transactivator of transcription (TAT) peptide. This study evaluated the cellular internalisation properties of five anti-HER2 Herceptin-TAT conjugates with degrees of TAT labelling (DOL) ranging from one to five.

View Article and Find Full Text PDF

Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an emerging optical imaging technology that affords high signal-to-noise images by utilising radionuclide-generated Cerenkov luminescence to excite fluorescent probes. BODIPY dyes offer attractive properties for SCIFI, including high quantum yields and photochemical stability, yet their utility in this application in combination with clinically relevant β-emitting radioisotopes remains largely unexplored. In this report, the fluorescence properties of three -substituted BODIPY analogues have been assessed in combination with the positron emitter zirconium-89.

View Article and Find Full Text PDF
Article Synopsis
  • * A new dual-modal imaging agent ([Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW) has been developed to target MT1-MMP, a protein often overexpressed in aggressive sarcomas, improving surgical planning and detection.
  • * Testing in a mouse model demonstrated that this imaging agent showed higher accumulation in tumors with high MT1-MMP expression, suggesting its efficacy for better surgical guidance in treating sarcomas.
View Article and Find Full Text PDF

More than half of the Top 10 supercomputing sites worldwide use GPU accelerators and they are becoming ubiquitous in workstations and edge computing devices. GeNN is a C++ library for generating efficient spiking neural network simulation code for GPUs. However, until now, the full flexibility of GeNN could only be harnessed by writing model descriptions and simulation code in C++.

View Article and Find Full Text PDF

Simulations are an important tool for investigating brain function but large models are needed to faithfully reproduce the statistics and dynamics of brain activity. Simulating large spiking neural network models has, until now, needed so much memory for storing synaptic connections that it required high performance computer systems. Here, we present an alternative simulation method we call 'procedural connectivity' where connectivity and synaptic weights are generated 'on the fly' instead of stored and retrieved from memory.

View Article and Find Full Text PDF

Precise spike timing and temporal coding are used extensively within the nervous system of insects and in the sensory periphery of higher order animals. However, conventional Artificial Neural Networks (ANNs) and machine learning algorithms cannot take advantage of this coding strategy, due to their rate-based representation of signals. Even in the case of artificial Spiking Neural Networks (SNNs), identifying applications where temporal coding outperforms the rate coding strategies of ANNs is still an open challenge.

View Article and Find Full Text PDF

: The evaluation of early treatment response is critical for patient prognosis and treatment planning. When the current methods rely on invasive protocols that evaluate the expression of DNA damage markers on patient biopsy samples, we aim to evaluate a non-invasive PET imaging approach to monitor the early expression of the phosphorylated histone γH2AX in the context of pancreatic cancer targeted radionuclide therapy. Pancreatic ductal adenocarcinoma has a poor patient prognosis due to the absence of curative treatment for patients with advanced disease.

View Article and Find Full Text PDF

Despite its widespread use in oncology, the PET radiotracer F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualization of high-grade pancreatic intraepithelial neoplasias (PanIN-3s), generally regarded as the noninvasive precursors of PDAC. The DNA damage response is known to be hyperactivated in late-stage PanINs.

View Article and Find Full Text PDF

Site-selective labelling of antibodies (Abs) can circumvent problems from heterogeneity of conventional conjugation. Here, we evaluate the industrially-applied chemoenzymatic 'Q-tag' strategy based on transglutaminase-mediated (TGase) amide-bond formation in the generation of 89Zr-radiolabelled antibody conjugates. We show that, despite previously suggested high regioselectivity of TGases, in the anti-Her2 Ab Herceptin™ more precise native MS indicates only 70-80% functionalization at the target site (Q298H), in competition with modification at other sites, such as Q3H critically close to the CDR1 region.

View Article and Find Full Text PDF

While radiolabelled antibodies have found great utility as PET and SPECT imaging agents in oncological investigations, a notable shortcoming of these agents is their propensity to accumulate non-specifically within tumour tissue. The degree of this non-specific contribution to overall tumour uptake is highly variable and can ultimately lead to false conclusions. Therefore, in an effort to obtain a reliable measure of inter-individual differences in non-specific tumour uptake of radiolabelled antibodies, we demonstrate that the use of dual-isotope imaging overcomes this issue, enables true quantification of epitope expression levels, and allows non-invasive in vivo immunohistochemistry.

View Article and Find Full Text PDF

One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca ions.

View Article and Find Full Text PDF

While neuromorphic systems may be the ultimate platform for deploying spiking neural networks (SNNs), their distributed nature and optimization for specific types of models makes them unwieldy tools for developing them. Instead, SNN models tend to be developed and simulated on computers or clusters of computers with standard von Neumann CPU architectures. Over the last decade, as well as becoming a common fixture in many workstations, NVIDIA GPU accelerators have entered the High Performance Computing field and are now used in 50 % of the Top 10 super computing sites worldwide.

View Article and Find Full Text PDF

Effective treatment for pancreatic cancer remains challenging, particularly the treatment of pancreatic ductal adenocarcinoma (PDAC), which makes up more than 95% of all pancreatic cancers. Late diagnosis and failure of chemotherapy and radiotherapy are all too common, and many patients die soon after diagnosis. Here, we make the case for the increased use of molecular imaging in PDAC preclinical research and in patient management.

View Article and Find Full Text PDF

SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity-believed to be one of the main mechanisms behind learning and memory in the brain.

View Article and Find Full Text PDF

Purpose: Despite its widespread use, the positron emission tomography (PET) radiotracer 2-deoxy-2-[F]fluoro-D-glucose ([F]FDG) has been shown in clinical settings to be ineffective for improving early diagnosis of pancreatic ductal adenocarcinoma (PDAC). A promising biomarker for PDAC detection is the tight junction protein claudin-4. The purpose of this study was to evaluate a new single-photon emission computed tomography (SPECT) imaging agent, [In]anti-claudin-4 mAb, with regard to its ability to allow visualisation of claudin-4 in a xenograft and a genetically engineered mouse model of PDAC.

View Article and Find Full Text PDF

Late-stage, unresectable pancreatic ductal adenocarcinoma (PDAC) is largely resistant to chemotherapy and consequently has a very poor 5-year survival rate of <5%. The ability to assess the efficacy of a treatment soon after its initiation would enable rapid switching to potentially more effective therapies if the current treatment is found to be futile. We have evaluated the ability of the PET imaging agent, Zr-anti-γH2AX-TAT, to monitor DNA damage in response to fluorouracil (5-FU), gemcitabine, or capecitabine treatment in a mouse model of pancreatic cancer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: