Publications by authors named "James C Fleet"

Environmental factors and genetic variation individually impact bone. However, it is not clear how these factors interact to influence peak bone mass accrual. Here we tested whether genetically programmed high bone formation driven by missense mutations in the Lrp5 gene (Lrp5A214V) altered the sensitivity of mice to an environment of inadequate dietary calcium (Ca) intake.

View Article and Find Full Text PDF

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3)-mediated intestinal calcium (Ca) absorption supplies Ca for proper bone mineralization during growth. We tested whether vitamin D receptor (VDR)-mediated 1,25(OH)2D3 signaling is critical for adult Ca absorption and bone by using mice with inducible Vdr gene knockout in the whole intestine (villin-CreERT2+/- × Vdrf/f, WIK) or in the large intestine (Cdx2-CreERT2+/- ×Vdrf/f, LIK). At 4-month-old, Vdr alleles were recombined (0.

View Article and Find Full Text PDF

Owing to ease of access and high yield, most murine myeloid-derived suppressor cell (MDSC) knowledge comes from the study of spleen-derived MDSCs rather than those isolated from the tumor. Although several studies have identified subtle differences in suppressive function between these MDSCs, a recent report demonstrated that the whole peripheral myeloid compartment poorly reflects myeloid populations found at the tumor. We confirm and extend these observations by presenting data that indicate extensive differences exist between peripheral and tumor MDSCs, suggesting that it may be inappropriate to use spleen MDSCs as surrogates for studying tumor MDSCs.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how genetics and dietary calcium affect peak bone mass, specifically how genetic factors influence bone response to low calcium intake.
  • The researchers used a mouse model to identify genetic locations associated with various bone traits while varying calcium diet.
  • Key findings include distinct genetic loci linked to bone traits that respond differently to dietary calcium, suggesting a complex relationship between genetics and nutrition in affecting bone density and structure.
View Article and Find Full Text PDF
Vitamin D and Gut Health.

Adv Exp Med Biol

September 2022

Vitamin D is a conditionally required nutrient that can either be obtained from skin synthesis following UVB exposure from the diet. Once in the body, it is metabolized to produce the endocrine hormone, 1,25 dihydroxyvitamin D (1,25(OH)2D), that regulates gene expression in target tissues by interacting with a ligand-activated transcription factor, the vitamin D receptor (VDR). The first, and most responsive, vitamin D target tissue is the intestine.

View Article and Find Full Text PDF

Vitamin D is a critical regulator of calcium and bone homeostasis. While vitamin D has multiple effects on bone and calcium metabolism, the regulation of intestinal calcium (Ca) absorption efficiency is a critical function for vitamin D. This is necessary for optimal bone mineralization during growth, the protection of bone in adults, and the prevention of osteoporosis.

View Article and Find Full Text PDF

1,25-dihydroxyvitamin D (VD) regulates intestinal calcium absorption in the small intestine (SI) and also reduces risk of colonic inflammation and cancer. However, the intestine compartment-specific target genes of VD signaling are unknown. Here, we examined VD action across three functional compartments of the intestine using RNA-seq to measure VD-induced changes in gene expression and Chromatin Immunoprecipitation with next generation sequencing to measure vitamin D receptor (VDR) genomic binding.

View Article and Find Full Text PDF

Vitamin D receptor (VDR) levels are highest in the intestine where it mediates 1,25 dihydroxyvitamin D-induced gene expression. However, the mechanisms controlling high intestinal VDR gene expression are unknown. Here, we used Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to identify the regulatory sites controlling intestine-specific Vdr gene expression in the small intestine (villi and crypts) and colon of developing, adult, and aged mice.

View Article and Find Full Text PDF

Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center.

View Article and Find Full Text PDF

Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D [1,25(OH)D]-activated genes in the proximal intestine associated with active calcium transport (, , and ) are also induced by 1,25(OH)D in the distal intestine of KO/TG mice.

View Article and Find Full Text PDF

Intestinal calcium (Ca) absorption depends upon vitamin D signaling through the vitamin D receptor (VDR) in the proximal and distal intestine while lower VDR content causes intestinal resistance to 1,25 dihydroxyvitamin D (1,25(OH) D) action. We tested whether intestinal responsiveness to 1,25(OH) D is increased in mice with higher than normal VDR levels resulting from transgenic VDR expression in the whole intestine (villin promoter-human VDR transgene, HV2). Wild type (WT) and HV2 mice were treated with 0, 0.

View Article and Find Full Text PDF
Article Synopsis
  • Vitamin D deficiency (VDD) during pregnancy is linked to respiratory issues and chronic lung disease in preterm infants, but its direct impact on lung structure and function is unclear.
  • In a study using rats, maternal VDD led to impaired lung growth and function in offspring, showing similar effects to those exposed to high oxygen levels after birth.
  • The findings suggest that low vitamin D levels during pregnancy may disrupt lung development and potentially heighten the risk of respiratory diseases later in childhood.
View Article and Find Full Text PDF
Article Synopsis
  • Vitamin D deficiency (VDD) during pregnancy is common and linked to various health issues for both mothers and newborns, affecting lung development in particular.
  • The study utilized RNA analysis to compare lung tissue from newborns of mothers with adequate vitamin D levels versus those with VDD, revealing 2233 differentially expressed genes.
  • Findings showed that VDD suppressed essential growth and signaling pathways while increasing immune system-related pathways, suggesting that maternal vitamin D status significantly impacts fetal lung development and creates a proinflammatory environment.
View Article and Find Full Text PDF

In 2016, the Multiple Sclerosis (MS) Society of Canada convened a panel of expert scientists, clinicians and patient advocate to review the evidence for an association between vitamin D status and MS prevention and/or disease modification. The goal was to develop clear and accurate recommendations on optimal vitamin D intake and status for people affected by MS for use in clinical practice and public health policy. The final consensus report was based on a review and grading of existing published papers combined with expert opinions of panel members.

View Article and Find Full Text PDF

The central role of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. This article describes the early work that served as the foundation for the initial model of vitamin D mediated calcium absorption. In addition, other research related to the role of vitamin D in the intestine, including those which have challenged the traditional model and the crucial role of specific calcium transport proteins, are reviewed.

View Article and Find Full Text PDF

Trabecular bone (Tb) is used for rapid exchange of calcium (Ca) in times of physiologic need and the site-specific characteristics of Tb may explain why certain sites are more vulnerable to osteoporosis. We hypothesized that peak trabecular bone mass (PTBM) and Tb microarchitecture are differentially regulated by dietary Ca intake, genetics, or Gene-by-Diet (GxD) interactions at the distal femur and the fifth lumbar (L5) vertebra. Male mice from 62 genetically distinct lines were fed basal (0.

View Article and Find Full Text PDF

We tested whether lifelong modification of vitamin D signaling can alter the progression of early prostate carcinogenesis in studies using mice that develop high-grade prostatic intraepithelial neoplasia that is similar to humans. Two tissue-limited models showed that prostate vitamin D receptor (VDR) loss increased prostate carcinogenesis. In another study, we fed diets with three vitamin D levels (inadequate = 25 IU/kg diet, adequate for bone health = 150 IU/kg, or high = 1,000 IU/kg) and two calcium levels (adequate for bone health = 0.

View Article and Find Full Text PDF

Two experiments were conducted to investigate the effects of 1,25(OH)2D3 to stimulate Na+-dependent phosphate uptake in Caco-2 cells, and the effects of dietary vitamin D supplementation to vitamin D-deficient nursery pigs on Na+-dependent nutrient uptake and mRNA expression of NaPi-IIb cotransporter and calbindin D9k in the jejunum. In Exp. 1, 250,000 Caco-2 cells were seeded on Costar 12 mm Snapwell inserts with a 0.

View Article and Find Full Text PDF

Objective: Hypovitaminosis D is common in the obese population and patients suffering from obesity-associated disorders such as type 2 diabetes and fatty liver disease, resulting in suggestions for vitamin D supplementation as a potential therapeutic option. However, the pathomechanistic contribution of the vitamin D-vitamin D receptor (VDR) axis to metabolic disorders is largely unknown.

Methods: We analyzed the pathophysiological role of global and intestinal VDR signaling in diet-induced obesity (DIO) using global Vdr-/- mice and mice re-expressing an intestine-specific human VDR transgene in the Vdr deficient background (Vdr-/- hTg).

View Article and Find Full Text PDF

Vitamin D and its' metabolites are a crucial part of the endocrine system that controls whole body calcium homeostasis. The goal of this hormonal control is to regulate serum calcium levels so that they are maintained within a very narrow range. To achieve this goal, regulatory events occur in coordination at multiple tissues, e.

View Article and Find Full Text PDF

Low vitamin D status potentiates experimental colitis, but the vitamin D-responsive cell in colitis has not been defined. We hypothesized that vitamin D has distinct roles in colonic epithelial cells and in nonepithelial cells during colitis. We tested this hypothesis by using mice with vitamin D receptor (VDR) deletion from colon epithelial cells (CEC-VDRKO) or nonintestinal epithelial cells (NEC-VDRKO).

View Article and Find Full Text PDF

High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)D)-mediated gene expression in cultured colon and intestinal cell lines.

View Article and Find Full Text PDF