Cucurbit[6]uril (CB[6]) is a macrocyclic compound, prepared in one pot from glycoluril and formaldehyde, whose molecular recognition properties have made it the object of intense study. Studies of the mechanism of CB[n] formation, which might provide insights that allow the tailor-made synthesis of CB[n] homologues and derivatives, have been hampered by the complex structure of CB[n]. By reducing the complexity of the reaction to the formation of S-shaped (12S-18S) and C-shaped (12C-18C) methylene bridged glycoluril dimers, we have been able to probe the fundamental steps of the mechanism of CB[n] synthesis to a level that has not been possible previously.
View Article and Find Full Text PDFThe monocyclopentadienyl zirconium acetamidinate complexes, (eta(5)-C(5)Me(5))Zr[N(R(1))C(Me)N(R(2))]R(3)R(4) (1-8), have been shown to be remarkably resistant to beta-hydrogen eliminations/abstractions, including the tert-butyl derivative, 3 (R(1) = R(2) = Cy, R(3) = t-Bu, R(4) = Cl), which resists both decomposition and isomerization in solution to temperatures of at least 100 degrees C. Further, two striking examples of an apparent preference for alternative hydrogen-atom abstractions in which complexes 1 and 7/8 that bear isomeric dibutyl substituents are transformed at elevated temperatures to complexes 9 and 10/11 that contain the isomeric butadiene and trimethylenemethane (TMM) C(4) fragments, respectively, are presented. These results serve to not only introduce a new ligand environment for zirconium in which beta-hydrogen elimination/abstraction processes are substantially retarded, but they further document the availability of alternative low-energy hydrogen abstraction pathways for group 4 alkyl complexes.
View Article and Find Full Text PDFTwo tridentate thioether pincer ligands, 1,3-(RSCH(2))(2)C(6)H(4) (R = (t)()Bu, 1a; R = (i)()Pr, 1b) underwent cyclometalation using [(COE)(2)RhCl](2) in air/moisture-free benzene at room temperature. The resultant complexes, [mu-ClRh(H)(RSCH(2))(2)C(6)H(3)-2,6](2) (R = (t)Bu, 2a; R = (i)Pr, 2b) are dimeric both in the solid state and in solution. A battery of variable-temperature one- and two-dimensional (1)H NMR experiments showed conclusively that both complexes undergo dynamic exchange in solution.
View Article and Find Full Text PDFWe report solid-state 23Na NMR and X-ray crystallographic results for a self-assembled G-quadruplex channel formed by a guanine nucleoside, 5'-tert-butyl-dimethylsilyl-2',3'-O-isopropylidene guanosine (G 1). The study provides an unambiguous 23Na NMR identification for the Na+ ions inside a lipophilic G-quadruplex channel. The crystalline nature of the sample yields a remarkably high resolution in the 23Na multiple-quantum magic-angle spinning (MQMAS) spectrum, making it possible to extract very accurate 23Na NMR parameters for each of the three crystallographically distinct Na sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2001
Angew Chem Int Ed Engl
August 2001
G-Quartets can bind anions as well as cations: Solid-state and solution data indicate that self-assembled ion-pair receptors are formed from 16 guanosine monomers, 2 divalent cations, and 4 picrate anions. Hydrogen-bonding, ion-dipole, and base-stacking interactions combine to give a tubular complex with a cation-loaded interior. An array of hydrogen-bond donors on the receptor's surface then enables anion coordination (see schematic representation, shaded rectangles=G-quartets, shaded circles=cations).
View Article and Find Full Text PDFEthylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = Cr (1a), W (1b)] react with (mesitylene)W(CO)(3) to form the bimetallic complexes [(en)(CO)(3)W(eta(1),eta(4)-P(7))M(CO)(3)](3)(-) where M = Cr (3a), W (3b) in good yield. Compound 3b can be prepared directly from P(7)(3)(-) and 2 equiv of (mesitylene)W(CO)(3). Compound 3a reacts with 1 equiv of P(7)(3)(-) to form 1a and 1b.
View Article and Find Full Text PDFThe reaction of CpMoH(CO)(2)L with AuPPh(3)(+)BF(4)(-) in THF at -40 degrees C proceeds directly to the MoAu(2) cluster compounds [CpMo(CO)(2)L(AuPPh(3))(2)](+)BF(4)(-) (L = PMe(3) (1), PPh(3) (2)) with release of protons. A 1:1 reaction leaves 50% of the starting hydride unreacted. At lower temperature, however, the formation of a [CpMo(CO)(2)(PMe(3))(&mgr;-H)(AuPPh(3))](+) intermediate is observed.
View Article and Find Full Text PDFBy interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR.
View Article and Find Full Text PDFWater-soluble phosphonate-functionalized triaryl phosphine ligands Na(2)[Ph(2)P(4-C(6)H(4)PO(3))].1.5H(2)O (4a), Na(2)[Ph(2)P(3-C(6)H(4)PO(3))].
View Article and Find Full Text PDFEthylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl).
View Article and Find Full Text PDF