Terbium has been added to the list of elements that form oxide clusters inside fullerene cages. TbO@(13333)-C has been isolated as a byproduct of the electric arc synthesis of the azafullerene Tb@CN. Cocrystallization of TbO@(13333)-C with Ni(OEP) (where OEP is the dianion of octaethylporphyrin) in toluene yielded black needles of TbO@(13333)-C·Ni(OEP)·1.
View Article and Find Full Text PDFIn this communication, we describe the successful encapsulation of (177)Lu into the endohedral metallofullerene (177)Lu(x)Lu(3-x)N@C(80) (x = 1-3) starting with (177)LuCl(3) in a modified quartz Kraschmer-Huffman electric generator. We demonstrate that the (177)Lu (beta-emitter) in this fullerene cage is not significantly released for a period of up to at least one-half-life (6.7 days).
View Article and Find Full Text PDFWe report an efficient method for the preparation and purification of the Ih and the D5h isomers of Tm3N@C80. Following preparation in a Kratschmer-Huffman electric-arc generator, the Tm3N@C80 isomers were obtained by a chemical separation process followed by a one-stage isomer selective chromatographic high-performance liquid chromatography (HPLC) separation (pyrenyl, 5PYE column). The HPLC chromatographic retention behavior on a pentabromobenzyl (5PBB) column suggests a charge transfer of approximately 6 electrons; [M3N] 6+@C80(6-) and the chromatographic retention mechanisms of the Ih and the D5h isomers of Tm3N@C80 on both 5PBB and 5PYE columns are discussed.
View Article and Find Full Text PDFThe study of intermolecular collisions and bonding interactions in solutions is of critical importance in understanding and predicting solute/solvent properties. Previous work has established that stable paramagnetic nitroxide molecules are excellent probes of intermolecular interactions for hydrogen bonding in polar solvents. In this study, 1H, 2H, 13C, 15N NMR and liquid/liquid intermolecular transfer dynamic nuclear polarization (L2IT DNP) results are obtained for the paramagnetic probe molecule, TEMPO, interacting with the common aprotic and protic polar solvents, CH3CN and CH3CONH2, yielding a profile of both dipolar and scalar interactions.
View Article and Find Full Text PDFThe recent finding that isomer 2 of Tb(3)N@C(84) uses one of the 51,568 possible nonisolated pentagon rule (non-IPR) structures for the C(84) cage rather than one of the 24 cage isomers that do obey the IPR suggests that further experimental work on the structure of larger endohedrals is needed to observe the utility of the IPR rule in this uncharted territory. The structures of the newly synthesized endohedral fullerenes--Tb(3)N@C(88), Tb(3)N@C(86), and the Ih and D(5)(h) isomers of Tb(3)N@C(80)--have been determined by single-crystal X-ray diffraction on samples cocrystallized with NiII(octaethylporphyrin). In contrast to the situation for isomer 2 of Tb(3)N@C(84), the structures of Tb(3)N@C(88) and Tb(3)N@C(86) do conform to the IPR.
View Article and Find Full Text PDFThe structure of isomer 2 of Tb3N@C84 has been determined through single-crystal X-ray diffraction on Tb3N@C84.NiII(OEP).2(C6H6).
View Article and Find Full Text PDFPurpose: To evaluate the effectiveness of a functionalized trimetallic nitride endohedral metallofullerene nanoparticle as a magnetic resonance (MR) imaging proton relaxation agent and to follow its distribution for in vitro agarose gel infusions and in vivo infusions in rat brain.
Materials And Methods: The animal study was approved by the animal care and use committee. Gd(3)N@C(80) was functionalized with poly(ethylene glycol) units, and the carbon cage was hydroxylated to provide improved water solubility and biodistribution.
Herein, we report the preparation, purification, and characterization of a mixed trimetallic nitride endohedral metallofullerene, CeSc(2)N@C(80). Single-crystal X-ray diffraction shows that CeSc(2)N@C(80) consists of a four-atom asymmetric top (CeSc(2)N) inside a C(80) (I(h)()) carbon cage. Unlike the situation in most endohedrals of the M(3)N@C(2)(n)() type, the nitride ion is not located at the center of the carbon cage but is offset by 0.
View Article and Find Full Text PDFA major hurdle hampering the development of fullerenes, endohedral metallofullerenes, and nanotubes has been the difficulty of obtaining high purity samples. Soots prepared in the usual manner via a Krätschmer-Huffman electric-arc generator consist of mixtures of insoluble carbonaceous materials and soluble fullerenes: C60, C70, C76, C78, C84, etc. When metals are introduced as endohedral species the complexity of the resultant soot is even greater because of the presence of multiple isomers of both the empty fullerenes and the endohedral metallofullerenes.
View Article and Find Full Text PDFThe MPW1PW91/6-311+G(2d,p) and MP2/6-311+G(2d,p) GIAO nuclear shieldings for a series of monosubstituted acetylenes have been calculated using the MP2/6-311G(2d,p) geometries. Axially symmetric substituents such as fluorine may lead to large changes in the isotropic shielding but have little effect on the tensor component (zz) about the C[triple bond]C bond axis. On the other hand, substituents such as vinyl and aldehyde groups lead to essentially no difference in the isotropic shielding but are calculated to give a large zz paramagnetic shift to the terminal carbon of the acetylene group, without having much effect on the inner carbon.
View Article and Find Full Text PDFThe structure of Sc3N@C80-C10H12O2, a Diels-Alder cycloadduct of Sc3N@C80, has been determined. The crystallographic data shows that cycloaddition occurs at a C-C bond of 6:5 ring junction, and that the fullerene C1-C2 bond is elongated and pulled out from the fullerene. The Sc3N unit is well-ordered within the C80 cage and positioned away from the site of addition.
View Article and Find Full Text PDFThe reaction of Sc3N@C80 with 6,7-dimethoxyisochroman-3-one (13C labeled) provides the first functionalized derivative of the trimetallic nitride template (TNT) endohedral metallofullerene family. The reaction mixture is dominated by a single 13C labeled monoadduct product that was purified by HPLC. The 13C labeled monoadduct was characterized by 1H NMR, 13C NMR, and MALDI-TOF mass spectrometry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2001