We describe a technique for measuring focus errors in a cryogenic, wide-field, near-infrared space telescope. The measurements are made with a collimator looking through a large vacuum window, with a reflective cold filter to reduce the background thermal infrared loading on the detectors and optics. The vacuum window and cold filter introduce a wavefront error that we characterize using an autocollimating microscope.
View Article and Find Full Text PDFExtragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history and may contain faint, extended components missed in galaxy point-source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR) or, alternately, intrahalo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.
View Article and Find Full Text PDFSubmillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1
We summarize the fabrication, flight qualification, and dark performance of bolometers completed at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2009. The HFI is a multicolor focal plane which consists of 52 bolometers operated at 100 mK. Each bolometer is mounted to a feedhorn-filter assembly which defines one of six frequency bands centered between 100-857 GHz.
View Article and Find Full Text PDFBolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data.
View Article and Find Full Text PDFModern far-infrared and submillimeter instruments require large-format arrays. We consider the relative performance of filled-array (bare pixel) and feedhorn-coupled architectures for bolometer focal planes. Based on typical array parameters, we quantify the relative observing speeds and comment on the merits of the different architectures.
View Article and Find Full Text PDFFar-infrared to millimeter-wave bolometers designed to make astronomical observations are typically encased in integrating cavities at the termination of feedhorns or Winston cones. This photometer combination maximizes absorption of radiation, enables the absorber area to be minimized, and controls the directivity of absorption, thereby reducing susceptibility to stray light. In the next decade, arrays of hundreds of silicon nitride micromesh bolometers with planar architectures will be used in ground-based, suborbital, and orbital platforms for astronomy.
View Article and Find Full Text PDF