Manned and unmanned systems are prevalent in a wide range of aerial searching applications. For aircraft whose trajectory is not or cannot be planned on-the-fly, optimal deterministic search pattern generation is a critical area of research. Lissajous curves have recently caught attention as excellent candidates for all kinds of aerial search applications, but little fundamental research has been done to understand how best to design Lissajous pattern (LP)s for this use.
View Article and Find Full Text PDFOne way to improve our model of Mars is through aerial sampling and surveillance, which could provide information to augment the observations made by ground-based exploration and satellite imagery. Flight in the challenging ultra-low-density Martian environment can be achieved with properly scaled bioinspired flapping wing vehicle configurations that utilize the same high lift producing mechanisms that are employed by insects on Earth. Through dynamic scaling of wings and kinematics, we investigate the ability to generate solutions for a broad range of flapping wing flight vehicles masses ranging from insects (10) kg to the Mars helicopter (10) kg.
View Article and Find Full Text PDFAIAA Atmos Flight Mech Conf 2019 (2019)
January 2019
With the resurgent interest in landing humans on Mars, it is critical that our understanding of the Martian environment is complete and accurate. One way to improve our model of the red planet is through aerial surveillance, which provides information that augments the observations made by ground-based exploration and satellite imagery. Although the ultra-low-density Mars environment has previously stymied designs for achieving flight on Mars, bioinspired solutions for flapping wing flight can utilize the same high lift producing mechanisms employed by insects on Earth.
View Article and Find Full Text PDFInsect wings are flexible, and the dynamically deforming wing shape influences the resulting aerodynamics and power consumption. However, the influence of wing flexibility on the flight dynamics of insects is unknown. Most stability studies in the literature consider rigid wings and conclude that the hover equilibrium condition is unstable.
View Article and Find Full Text PDFAchieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling.
View Article and Find Full Text PDFBioinspir Biomim
June 2017
Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer.
View Article and Find Full Text PDF