Publications by authors named "James Bibb"

Depression can be associated with chronic systemic inflammation, and production of peripheral proinflammatory cytokines and upregulation of the kynurenine pathway have been implicated in pathogenesis of depression. However, the mechanistic bases for these comorbidities are not yet well understood. As tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), which convert tryptophan to kynurenine, are rate-limiting enzymes of the kynurenine pathway, we screened TDO or IDO inhibitors for effects on the production of proinflammatory cytokines in a mouse macrophage cell line.

View Article and Find Full Text PDF

Mechanistic modeling of cancers such as Medullary Thyroid Carcinoma (MTC) to emulate patient-specific phenotypes is challenging. The discovery of potential diagnostic markers and druggable targets in MTC urgently requires clinically relevant animal models. Here we established orthotopic mouse models of MTC driven by aberrantly active Cdk5 using cell-specific promoters.

View Article and Find Full Text PDF

Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury.

View Article and Find Full Text PDF

Investigations into the causative role that western dietary patterns have on obesity and disease pathogenesis have speculated that quality and quantity of dietary fats and/or carbohydrates have a predictive role in the development of these disorders. Standard reference diets such as the AIN-93 rodent diet have historically been used to promote animal health and reduce variation of results across experiments, rather than model modern human dietary habits or nutrition-related pathologies. In rodents high-fat diets (HFDs) became a classic tool to investigate diet-induced obesity (DIO).

View Article and Find Full Text PDF

Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca], and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25.

View Article and Find Full Text PDF

Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. However, the crosstalk between glutamate and dopamine signaling has not been entirely elucidated. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIβ.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration.

View Article and Find Full Text PDF

Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4 T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease.

View Article and Find Full Text PDF

Few models exist for studying neuroendocrine tumors (NETs), and there are mounting concerns that the currently available array of cell lines is not representative of NET biology. The lack of stable patient-derived NET xenograft models further limits the scientific community's ability to make conclusions about NETs and their response to therapy in patients. To address these limitations, we propose the use of an ex vivo 3D flow-perfusion bioreactor system for culturing and studying patient-derived NET surrogates.

View Article and Find Full Text PDF

Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous population of neoplasms that arise from hormone-secreting islet cells of the pancreas and have increased markedly in incidence over the past four decades. Non-functional PanNETs, which occur more frequently than hormone-secreting tumors, are often not diagnosed until later stages of tumor development and have poorer prognoses. Development of successful therapeutics for PanNETs has been slow, partially due to a lack of diverse animal models for pre-clinical testing.

View Article and Find Full Text PDF

Novel treatments, screening, and detection methods have prolonged the lives of numerous cancer patients worldwide. Unfortunately, existing and many promising new chemotherapeutics can cause deleterious, off-target side effects in normal tissue and organ systems. The central and peripheral nervous systems are widely recognized as frequent off-target effectors of anticancer drugs which can produce persistent neurological and neuropsychiatric symptoms collectively termed "chemobrain".

View Article and Find Full Text PDF

The neurobiological mechanisms that mediate psychiatric comorbidities associated with metabolic disorders such as obesity, metabolic syndrome and diabetes remain obscure. High fructose corn syrup (HFCS) is widely used in beverages and is often included in food products with moderate or high fat content that have been linked to many serious health issues including diabetes and obesity. However, the impact of such foods on the brain has not been fully characterized.

View Article and Find Full Text PDF

Gamma secretase inhibitors (GSIs), initially developed as Alzheimer's therapies, have been repurposed as anticancer agents given their inhibition of Notch receptor cleavage. The success of GSIs in preclinical models has been ascribed to induction of cancer stem-like cell differentiation and apoptosis, while also impairing epithelial-to-mesenchymal transition and sensitizing cells to traditional chemoradiotherapies. The promise of these agents has yet to be realized in the clinic, however, as GSIs have failed to demonstrate clinical benefit in most solid tumors with the notable exceptions of CNS malignancies and desmoid tumors.

View Article and Find Full Text PDF

Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses.

View Article and Find Full Text PDF

Neuroendocrine (NE) tumors include a diverse spectrum of hormone-secreting neoplasms that arise from the endocrine and nervous systems. Current chemo- and radio-therapies have marginal curative benefits. The goal of this study was to develop an innovative antibody-drug conjugate (ADC) to effectively treat NE tumors (NETs).

View Article and Find Full Text PDF

Background: Pheochromocytomas (PCCs) and paragangliomas (PGLs) are neuroendocrine tumors that are mostly benign. Metastatic disease does occur in about 10% of cases of PCC and up to 25% of PGL, and for these patients no effective therapies are available. Patients with mutations in the succinate dehydrogenase subunit B (SDHB) gene tend to have metastatic disease.

View Article and Find Full Text PDF

Surgical resection is the only cure for neuroendocrine tumors (NETs). However, widespread metastases have already occured by the time of initial diagnosis in many cases making complete surgical removal impossible. We developed a recombinant heavy-chain receptor binding domain (rHCR) of botulinum neurotoxin type A that can specifically target synaptic vesicle 2 (SV2), a surface receptor abundantly expressed in multiple neuroendocrine tumors.

View Article and Find Full Text PDF

Neuroendocrine neoplasms (NENs) are derived from neuroendocrine cell system and can have benign or malignant characteristics. They are rare tumors, but have been increasing in incidence over the past 40 years. Patients with NENs may develop symptoms due to primary tumor invasion, metastasis, or from secretion of hormonally active tumor substances.

View Article and Find Full Text PDF

Medullary thyroid carcinoma (MTC) is a slow growing neuroendocrine (NE) tumor for which few treatment options are available. Its incidence is rising and mortality rates have remained unchanged for decades. Increasing the repertoire of available treatments is thus crucial to manage MTC progression.

View Article and Find Full Text PDF

Direct or indirect exposure to an explosion can induce traumatic brain injury (TBI) of various severity levels. Primary TBI from blast exposure is commonly characterized by internal injuries, such as vascular damage, neuronal injury, and contusion, without external injuries. Current animal models of blast-induced TBI (bTBI) have helped to understand the deleterious effects of moderate to severe blast forces.

View Article and Find Full Text PDF

Activation of the vascular endothelium is characterized by increased expression of vascular adhesion molecules and chemokines. This activation occurs early in the progression of several diseases and triggers the recruitment of leukocytes. Inspired by the tropism of leukocytes, we investigated leukocyte-based biomimetic nanoparticles (i.

View Article and Find Full Text PDF

Cognitive deficits are a major hallmark of Huntington's disease (HD) with a great impact on the quality of patient's life. Gaining a better understanding of the molecular mechanisms underlying learning and memory impairments in HD is, therefore, of critical importance. Cdk5 is a proline-directed Ser/Thr kinase involved in the regulation of synaptic plasticity and memory processes that has been associated with several neurodegenerative disorders.

View Article and Find Full Text PDF

Cdk5 is an atypical cyclin-dependent kinase that is well characterized for its role in the central nervous system rather than in the cell cycle. However Cdk5 has been recently implicated in the development and progression of a variety of cancers including breast, lung, colon, pancreatic, melanoma, thyroid and brain tumors. This broad pro-tumorigenic role makes Cdk5 a promising drug target for the development of new cancer therapies.

View Article and Find Full Text PDF

The striatum controls multiple cognitive aspects including motivation, reward perception, decision-making and motor planning. In particular, the dorsolateral striatum contributes to motor learning. Here we define an approach for investigating synaptic plasticity in mouse dorsolateral cortico-striatal circuitry and interrogate the relative contributions of neurotransmitter receptors and intracellular signaling components.

View Article and Find Full Text PDF