Publications by authors named "James Bertram"

Therapies based on RNA interference, using agents such as siRNA, are limited by the absence of safe, efficient vehicles for targeted delivery in vivo. The barriers to siRNA delivery are well known and can be individually overcome by addition of functional modules, such as conjugation of moieties for cell penetration or targeting. But, so far, it has been impossible to engineer multiple modules into a single unit.

View Article and Find Full Text PDF

Blood loss is the major cause of death in both civilian and battlefield traumas. Methods to staunch bleeding include pressure dressings and absorbent materials. For example, QuikClot effectively halts bleeding by absorbing large quantities of fluid and concentrating platelets to augment clotting, but these treatments are limited to compressible and exposed wounds.

View Article and Find Full Text PDF

Inhibition of the epidermal growth factor receptor (EGFR) reduces tumour growth and metastases and promotes axon regeneration in the central nervous system. Current EGFR inhibition strategies include the administration of reversible small-molecule tyrosine kinase inhibitors (TKIs). However, to be effective in vivo sustained delivery is required.

View Article and Find Full Text PDF

Purpose: Brain-derived neurotrophic factor (BDNF) plays an important role in neuroprotection and repair, but long-term delivery from polymer systems has been challenging. We investigated the role the chemistry of the polymer played in loading and delivery of BDNF via microspheres, which are suitable for minimally invasive administration.

Methods: We synthesized polymers based on PLGA and PEG to determine what components augmented loading and delivery.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) is one of the more widely used polymers for biomedical applications. Nonetheless, PLGA lacks chemical moieties that facilitate cellular interactions and surface chemistries. Furthermore, incorporation of hydrophilic molecules is often problematic.

View Article and Find Full Text PDF

Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model.

View Article and Find Full Text PDF

It is estimated that 2.2 million people have glaucoma in the US and 67 million people worldwide. The majority of cases are associated with elevated intraocular pressure (IOP) and decreasing IOP eliminates or greatly reduces degeneration in most cases, including cases in which the IOP is in the normal range but optic neuropathy occurs.

View Article and Find Full Text PDF

Transplantation of Bcl-2-transduced human umbilical vein endothelial cells (ECs) in protein gels into the gastrocnemius muscle improves local reperfusion in immunodeficient mouse hosts with induced hind limb ischemia. We tested the hypothesis that incorporation of local, sustained growth factor delivery could enhance and accelerate this effect. Tissue engineering scaffolds often use synthetic polymers to enable controlled release of proteins, but most synthetic delivery systems have major limitations, most notably hydrophobicity and inefficient protein loading.

View Article and Find Full Text PDF

Neural stem cells (NSCs) have the potential to replace the major cell types of the central nervous system (CNS) and may be important in therapies for injuries to and diseases of the CNS. However, for such treatments to be safe and successful, NSCs must survive and differentiate appropriately following transplantation. A number of polymer scaffolds have shown promise in improving the survival and promoting the differentiation of NSCs.

View Article and Find Full Text PDF

Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neuronal and glial cell populations, including oligodendrocytes. Present results suggest that, although CNTF has a potent survival and differentiation promoting effect in vitro on OPCs isolated from the adult spinal cord, CNTF administration in vivo is not sufficient to promote oligodendrocyte remyelination in the glial-depleted environment of unilateral ethidium bromide (EB) lesions.

View Article and Find Full Text PDF

A critical shortcoming of current surface functionalization schemes is their inability to selectively coat patterned substrates at micrometer and nanometer scales. This limitation prevents localized deposition of macromolecules at high densities, thereby restricting the versatility of the surface. A new approach for functionalizing lithographically patterned substrates that eliminates the need for alignment and, thus, is scalable to any dimension is reported.

View Article and Find Full Text PDF

A microvascular network is critical for the survival and function of most tissues. We have investigated the potential of neural progenitor cells to augment the formation and stabilization of microvascular networks in a previously uncharacterized three-dimensional macroporous hydrogel and the ability of this engineered system to develop a functional microcirculation in vivo. The hydrogel is synthesized by cross-linking polyethylene glycol with polylysine around a salt-leached polylactic-co-glycolic acid scaffold that is degraded in a sodium hydroxide solution.

View Article and Find Full Text PDF