There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the bedside or in the doctor's office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the adoption of screening programs.
View Article and Find Full Text PDFPrecision metabolomics and quantification for cost-effective rapid diagnosis of disease are the key goals in personalized medicine and point-of-care testing. At present, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern computing and communications possible by integration of complex functions within a single chip.
View Article and Find Full Text PDFVideo capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components.
View Article and Find Full Text PDFFluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications.
View Article and Find Full Text PDFWe report on the design, fabrication, testing, and packaging of a miniaturized system capable of detecting autofluorescence (AF) from mammalian intestinal tissue. The system comprises an application-specific integrated circuit (ASIC), light-emitting diode, optical filters, control unit, and radio transmitter. The ASIC contains a high-voltage charge pump and single-photon avalanche diode detector (SPAD).
View Article and Find Full Text PDF