Purpose: The purpose of this study was to investigate an extended self-adapting nnU-Net framework for detecting and segmenting brain metastases (BM) on magnetic resonance imaging (MRI).
Methods And Materials: Six different nnU-Net systems with adaptive data sampling, adaptive Dice loss, or different patch/batch sizes were trained and tested for detecting and segmenting intraparenchymal BM with a size ≥2 mm on 3 Dimensional (3D) post-Gd T1-weighted MRI volumes using 2092 patients from 7 institutions (1712, 195, and 185 patients for training, validation, and testing, respectively). Gross tumor volumes of BM delineated by physicians for stereotactic radiosurgery were collected retrospectively and curated at each institute.
Background: Volumetric reconstruction of magnetic resonance imaging (MRI) from sparse samples is desirable for 3D motion tracking and promises to improve magnetic resonance (MR)-guided radiation treatment precision. Data-driven sparse MRI reconstruction, however, requires large-scale training datasets for prior learning, which is time-consuming and challenging to acquire in clinical settings.
Purpose: To investigate volumetric reconstruction of MRI from sparse samples of two orthogonal slices aided by sparse priors of two static 3D MRI through implicit neural representation (NeRP) learning, in support of 3D motion tracking during MR-guided radiotherapy.
There is debate about why stereotactic body radiation therapy (SBRT) produces superior control of hepatocellular cancer (HCC) compared to fractionated treatment. Both preclinical and clinical evidence has been presented to support a "classic" biological explanation: the greater BED of SBRT produces more DNA damage and tumor cell kill. More recently, preclinical evidence has supported the concept of a "new biology", particularly radiation-induced vascular collapse, which increases hypoxia and free radical activation.
View Article and Find Full Text PDFBackground: Apparent diffusion coefficient is not specifically sensitive to tumor microstructure and therapy-induced cellular changes.
Purpose: To investigate time-dependent diffusion imaging with the short-time-limit random walk with barriers model (STL-RWBM) for quantifying microstructure parameters and early cancer cellular response to therapy.
Study Type: Prospective.
Online adaptive radiotherapy has demonstrated improved dose conformality in response to inter-fraction geometric variations in the abdomen. The dosimetric impact of intra-fractional variations in anatomic configuration resulting from breathing, gastric contraction and slow configuration motion, however, have been largely ignored, leading to differences between delivered and planned. To investigate the impact of intra-fractional abdominal motions on delivered dose, anatomical deformations due to these three motion modes were extracted from dynamic MRI data using a previously developed hierarchical motion modeling methodology.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2022
Purpose: Building accurate and robust artificial intelligence systems for medical image assessment requires the creation of large sets of annotated training examples. However, constructing such datasets is very costly due to the complex nature of annotation tasks, which often require expert knowledge (e.g.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
June 2023
Purpose: Gender-based discrimination and sexual harassment have been well-studied in the fields of science, technology, engineering, math, and medicine. However, less is known about these topics and their effect within the profession of medical physics. We aimed to better understand and clarify the views and experiences of practicing medical physicists and medical physics residents regarding gender-based discrimination and sexual harassment.
View Article and Find Full Text PDFPrecision radiation therapy requires managing motions of organs at risk that occur during treatment. While methods have been developed for real-time respiratory motion tracking, non-breathing intra-fractional variations (including gastric contractile motion) have seen little attention to date. The purpose of this study is to develop a cyclic gastric contractile motion prediction model to support real-time management during radiotherapy.
View Article and Find Full Text PDFRadiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain.
View Article and Find Full Text PDFPurpose: To develop a geometry-informed deep learning framework for volumetric MRI with sub-second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time.
Methods: A 2D-3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k-space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space.
Purpose: Medical physics residents (MPRs) will define and shape the future of physics in medicine. We sought to better understand the residency experience, as related to resilience and well-being, through the lens of current MPRs and medical physicists (MPs) working with residents.
Methods And Materials: From February-May 2019, we conducted 32, 1-h, confidential, semi-structured interviews with MPs either currently enrolled in an accredited residency (n = 16) or currently employed by a department with an accredited residency (n = 16).
Purpose: Radiation therapy (RT) can increase the risk of cardiac events in patients with breast cancer (BC), but biomarkers predicting risk for developing RT-induced cardiac disease are currently lacking. We report results from a prospective clinical trial evaluating early magnetic resonance imaging (MRI) and serum biomarker changes as predictors of cardiac injury and risk of subsequent cardiac events after RT for left-sided disease.
Methods: Women with node-negative and node-positive (N-/+) left-sided BC were enrolled on 2 institutional review board (IRB)-approved protocols at 2 institutions.
Abdominal organ motions introduce geometric uncertainties to radiotherapy. This study investigates a multi-temporal resolution 3D motion prediction scheme that accounts for both breathing and slow drifting motion in the abdomen in support of MRI-guided radiotherapy. Ten-minute MRI scans were acquired for 8 patients using a volumetric golden-angle stack-of-stars sequence.
View Article and Find Full Text PDFPurpose: To generate an understanding of the primary concerns facing medical physicists regarding integration of a demanding technical career with their personal lives.
Methods And Materials: In 2019, we recruited 32 medical physics residents, faculty, and staff via emails to US medical physics residency program directors to participate in a 1-hour, semistructured interview that elicited their thoughts on several topics, including work-life integration. Standard techniques of qualitative thematic analysis were used to generate the research findings.
The past decade has seen the increasing integration of magnetic resonance (MR) imaging into radiation therapy (RT). This growth can be contributed to multiple factors, including hardware and software advances that have allowed the acquisition of high-resolution volumetric data of RT patients in their treatment position (also known as MR simulation) and the development of methods to image and quantify tissue function and response to therapy. More recently, the advent of MR-guided radiation therapy (MRgRT) - achieved through the integration of MR imaging systems and linear accelerators - has further accelerated this trend.
View Article and Find Full Text PDFWe investigate the impact of various deep-learning-based methods for detecting and segmenting metastases with different lesion volume sizes on 3D brain MR images. A 2.5D U-Net and a 3D U-Net were selected.
View Article and Find Full Text PDFPurpose: Dose to normal lung has commonly been linked with radiation-induced lung toxicity (RILT) risk, but incorporating functional lung metrics in treatment planning may help further optimize dose delivery and reduce RILT incidence. The purpose of this study was to investigate the impact of the dose delivered to functional lung regions by analyzing perfusion (Q), ventilation (V), and combined V/Q single-photon-emission computed tomography (SPECT) dose-function metrics with regard to RILT risk in patients with non-small cell lung cancer (NSCLC) patients who received radiation therapy (RT).
Methods And Materials: SPECT images acquired from 88 patients with locally advanced NSCLC before undergoing conventionally fractionated RT were retrospectively analyzed.
Abdominal organ motions introduce geometric uncertainties to gastrointestinal radiotherapy. This study investigated slow drifting motion induced by changes of internal anatomic organ arrangements using a 3D radial MRI sequence with a scan length of 20 min. Breathing motion and cyclic GI motion were first removed through multi-temporal resolution image reconstruction.
View Article and Find Full Text PDFPurpose: Most existing computed tomography (CT)-ventilation imaging techniques are based on deformable image registration (DIR) of different respiratory phases of a four-dimensonal CT (4DCT) scan of the lung, followed by the quantification of local breathing-induced changes in Hounsfield Units (HU) or volume. To date, only moderate correlations have been reported between these CT-ventilation metrics and standard ventilation imaging modalities for adaptive lung radiation therapy. This study evaluates the use of stress maps derived from biomechanical model-based DIR as an alternative CT-ventilation metric.
View Article and Find Full Text PDFPurpose: Gastrointestinal motion patterns such as peristalsis and segmental contractions can alter the shape and position of the stomach and intestines with respect to other irradiated organs during radiation therapy. Unfortunately, these deformations are concealed by conventional four-dimensional (4D)-MRI techniques, which were developed to visualize respiratory motion by binning acquired data into respiratory motion states without considering the phases of GI motion. We present a method to reconstruct breathing-compensated images showing the phases of periodic gastric motion and study the effect of this motion on regional anatomical structures.
View Article and Find Full Text PDFPurpose: We hypothesized that dose-intensified chemoradiation therapy targeting adversely prognostic hypercellular (TV) and hyperperfused (TV) tumor volumes would improve outcomes in patients with glioblastoma.
Methods And Materials: This single-arm, phase 2 trial enrolled adult patients with newly diagnosed glioblastoma. Patients with a TV/TV >1 cm, identified using high b-value diffusion-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced perfusion MRI, were treated over 30 fractions to 75 Gy to the TV/TV with temozolomide.
The use of dedicated magnetic resonance simulation (MR-SIM) platforms in Radiation Oncology has expanded rapidly, introducing new equipment and functionality with the overall goal of improving the accuracy of radiation treatment planning. However, this emerging technology presents a new set of challenges that need to be addressed for safe and effective MR-SIM implementation. The major objectives of this report are to provide recommendations for commercially available MR simulators, including initial equipment selection, siting, acceptance testing, quality assurance, optimization of dedicated radiation therapy specific MR-SIM workflows, patient-specific considerations, safety, and staffing.
View Article and Find Full Text PDFAbdominal organs are subject to a variety of physiological forces that superimpose their effects to influence local motion and configuration. These forces not only include breathing, but can also arise from cyclic antral contractions and a range of slow configuration changes. To elucidate each individual motion pattern as well as their combined effects, a hierarchical motion model was built for characterization of these 3 motion modes (characterized as deformation maps between states) using golden angle radial MR signals.
View Article and Find Full Text PDFThe interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the detection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance.
View Article and Find Full Text PDF