Past large igneous province (LIP) emplacement is commonly associated with mantle plume upwelling and led to major carbon emissions. One of Earth's largest past environmental perturbations, the Toarcian oceanic anoxic event (T-OAE; ~183 Ma), has been linked to Karoo-Ferrar LIP emplacement. However, the role of mantle plumes in controlling the onset and timing of LIP magmatism is poorly understood.
View Article and Find Full Text PDFThe Paleocene-Eocene Thermal Maximum (PETM) was a period of geologically-rapid carbon release and global warming ~56 million years ago. Although modelling, outcrop and proxy records suggest volcanic carbon release occurred, it has not yet been possible to identify the PETM trigger, or if multiple reservoirs of carbon were involved. Here we report elevated levels of mercury relative to organic carbon-a proxy for volcanism-directly preceding and within the early PETM from two North Sea sedimentary cores, signifying pulsed volcanism from the North Atlantic Igneous Province likely provided the trigger and subsequently sustained elevated CO.
View Article and Find Full Text PDFGeological materials such as rock fragments, microfossils and mineral grains are continuously being entrained (i.e. reworked) into soil during natural weathering processes.
View Article and Find Full Text PDFCarbon and oxygen isotopes (δC and δO) in tree rings are widely used to reconstruct palaeoclimate variables such as temperature during the Holocene (12 thousand years ago - present), and are used increasingly in deeper time. However, their use is largely restricted to arboreal trees, which excludes potentially important data from prostrate trees and shrubs, which grow in high latitude and altitude end-member environments. Here, we calibrate the use of δC and δO as climatic archives in two modern species of southern beech (Nothofagus) from Tierra del Fuego, Chile, at the southern limit of their current range.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic-Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δC data. Here we present a δC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom.
View Article and Find Full Text PDFEarth scientists are often asked to establish or constrain the likely provenance of very small quantities of earth-related material as part of a forensic investigation. We tested the independent and collective interpretations of four experts with differing analytical skills in the prediction of sample provenance for three samples from different environmental settings. The methods used were X-ray diffraction, scanning electron microscopy, the assessment of pollen assemblages, and structural characterization of organic matter at the molecular level.
View Article and Find Full Text PDF