Numerous investigations have linked mitochondrial dysfunction to adverse health outcomes and drug-induced toxicity. The pharmaceutical industry is challenged with identifying mitochondrial liabilities earlier in drug development and thereby reducing late-stage attrition. Consequently, there is a demand for reliable, higher-throughput screening methods for assessing the impact of drug candidates on mitochondrial function.
View Article and Find Full Text PDFBackground: Vanadium pentoxide (V2O5) exposure is a cause of occupational bronchitis and airway fibrosis. Respiratory syncytial virus (RSV) is a ubiquitous pathogen that causes airway inflammation. It is unknown whether individuals with pre-existing respiratory viral infection are susceptible to V2O5-induced bronchitis.
View Article and Find Full Text PDFBackground: Exposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis.
Methods: Normal human lung fibroblasts were exposed to V2O5 in a time course experiment.
Background: Nanotechnology is a rapidly advancing industry with many new products already available to the public. Therefore, it is essential to gain an understanding of the possible health risks associated with exposure to nanomaterials and to identify biomarkers of exposure. In this study, we investigated the fibrogenic potential of SWCNT synthesized by chemical vapor deposition using cobalt (Co) and molybdenum (Mo) as catalysts.
View Article and Find Full Text PDFIL-13 is a key cytokine involved in airway remodeling in asthma. We previously reported that IL-13 stimulated the mitogenesis of lung fibroblasts via platelet-derived growth factor (PDGF)-AA. In this report, we show that IL-13 increases PDGF-A and PDGF-C mRNA levels through a dual intracellular cascade that requires coactivation of Stat6 and Stat1 to impact transcriptional regulation of the early growth response (Egr)-1 gene, which then drives PDGF expression.
View Article and Find Full Text PDFA multispecies, subchronic, inhalation study comparing pulmonary responses to ultrafine titanium dioxide (uf-TiO(2)) was performed. Female rats, mice, and hamsters were exposed to aerosol concentrations of 0.5, 2.
View Article and Find Full Text PDFBenzene, a carcinogen that induces chromosomal breaks, is strongly associated with leukemias in humans. Possible genetic determinants of benzene susceptibility include proteins involved in repair of benzene-induced DNA damage. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), encoded by Prkdc, is one such protein.
View Article and Find Full Text PDFInterspecies differences in pulmonary and pleural responses to the inhalation of natural mineral and synthetic vitreous fibers have been observed in chronic and subchronic studies. However, the reasons for these differences are not clearly understood. There are also fiber-specific differences in the outcome of chronic inhalation exposure to natural mineral and synthetic vitreous fibers.
View Article and Find Full Text PDFPleural inflammation is a sequela of exposure to toxic mineral fibers such as amosite asbestos. This inflammatory response involves the influx of leukocytes from the vasculature into the pleural space. Adhesion molecules such as intercellular adhesion molecule-1 (ICAM)-1 and chemokines such as monocyte chemoattractant protein-1 (MCP)-1 and macrophage inhibitory protein-2 (MIP)-2 are known to be important in pulmonary inflammation following inhalation of particulate matter.
View Article and Find Full Text PDFEpidemiological studies have indicated that exposure to elevated levels of particulate matter exacerbates several pulmonary diseases, including asthma, bronchitis, and viral infections. Respiratory syncytial virus (RSV) is the major cause of bronchiolitis and pneumonia in infants and may lead to the development of asthma in childhood. To determine whether particle exposure modulates the immune response to RSV, eight-week-old female BALB/c mice received an intratracheal (i.
View Article and Find Full Text PDFExposure to particulate matter (PM) may exacerbate preexisting respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), bronchitis, and pneumonia. However, few experimental studies have addressed the effects of PM on lower respiratory tract (LRT) viral infection. Respiratory syncytial virus (RSV) is a major etiological agent for LRT infections in infants, the elderly, and the immunocompromised and may lead to chronic wheezing and the development of asthma in children.
View Article and Find Full Text PDFFemale mice, rats, and hamsters were exposed to 10, 50, or 250 mg/m(3) pigmentary titanium dioxide (p-TiO(2)) particles for 6 h per day and 5 days per week for 13 weeks with recovery groups held for an additional 4, 13, 26, or 52 weeks postexposure (46 weeks for the p-TiO(2)-exposed hamsters). At each time point p-TiO(2) burdens in the lung and lymph nodes and selected lung responses were examined. The responses studied were chosen to assess a variety of pulmonary parameters, including inflammation, cytotoxicity, lung cell proliferation, and histopathologic alterations.
View Article and Find Full Text PDF