Janus kinase (JAK) inhibitors, also known as jakinibs, are third-generation oral small molecules that have expanded the therapeutic options for the management of chronic inflammatory diseases, including inflammatory bowel disease (IBD). Tofacitinib, a pan-JAK inhibitor, has spearheaded the new JAK class for IBD treatment. Unfortunately, serious adverse effects, including cardiovascular complications such as pulmonary embolism and venous thromboembolism or even death from any cause, have been reported for tofacitinib.
View Article and Find Full Text PDFBackground: Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs.
View Article and Find Full Text PDFNonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast.
View Article and Find Full Text PDFThe development of treatments for influenza that inhibit the M2 proton channel without being susceptible to the widespread resistance mechanisms associated with the adamantanes is an ongoing challenge. Using a yeast high-throughput yeast growth restoration assay designed to identify M2 channel inhibitors, a single screening hit was uncovered. This compound (3), whose structure was incorrectly identified in the literature, is an inhibitor with similar potency to amantadine against WT M2.
View Article and Find Full Text PDFThe Inhibitor of Apoptosis Proteins (IAPs) play a critical role in the regulation of cellular apoptosis and cytokine signaling. IAP family members include XIAP, cIAP1, cIAP2, NAIP, survivin, Apollon/Bruce, ML-IAP/livin and TIAP. The IAPs have been targeted using both antisense oligonucleotides and small molecule inhibitors.
View Article and Find Full Text PDFDrug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin.
View Article and Find Full Text PDFDeregulated expression of members of the IAP (inhibitor of apoptosis) family has been identified in a wide variety of neoplastic cells, and synthetic IAP antagonists represent a promising novel class of chemotherapeutic agents. Early work focused on the ability of these compounds to block the caspase-inhibitory function of XIAP (X-linked IAP). However, recent studies have shown that IAP antagonists, although primarily designed to target XIAP, trigger ubiquitin-mediated degradation of two related proteins, c-IAP (cellular IAP) 1 and c-IAP2, and through this process potentiates the death of tumour cells via autocrine cellular-signalling pathways.
View Article and Find Full Text PDFThe inhibitor of apoptosis (IAP) family of proteins enhances cell survival through mechanisms that remain uncertain. In this report, we show that cIAP1 and cIAP2 promote cancer cell survival by functioning as E3 ubiquitin ligases that maintain constitutive ubiquitination of the RIP1 adaptor protein. We demonstrate that AEG40730, a compound modeled on BIR-binding tetrapeptides, binds to cIAP1 and cIAP2, facilitates their autoubiquitination and proteosomal degradation, and causes a dramatic reduction in RIP1 ubiquitination.
View Article and Find Full Text PDF[reaction: see text] The asymmetric synthesis of the methylated tryptophan portion of hemiasterlin peptides is described. The key reactions are a SnCl4-mediated ring opening of epoxynitriles or epoxysulfones by N-methylindole followed by an asymmetric Strecker reaction. A second approach involving opening of glycidic esters by indoles is also described.
View Article and Find Full Text PDF