Publications by authors named "James B Hilton"

Tumours are abnormal growths of cells that reproduce by redirecting essential nutrients and resources from surrounding tissue. Changes to cell metabolism that trigger the growth of tumours are reflected in subtle differences between the chemical composition of healthy and malignant cells. We used LA-ICP-MS imaging to investigate whether these chemical differences can be used to spatially identify tumours and support detection of primary colorectal tumours in anatomical pathology.

View Article and Find Full Text PDF

Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice.

View Article and Find Full Text PDF

Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology.

View Article and Find Full Text PDF

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis of μ-droplets is becoming an attractive alternative for detecting and quantifying elements in biological samples. With minimal sample preparation required and detection limits comparable to solution nebulisation ICP-MS, μ-droplets have substantial advantages over traditional elemental detection, particularly for low volumes, such as aliquots taken from samples required for multiple independent biochemical assays, or fluids and tissues where elements of interest exist at native concentrations not suited to the necessary dilution steps required for solution nebulisation ICP-MS. However, the characteristics of μ-droplet residue deposition are heavily dependent on the matrix, and potential effects on signal suppression or enhancement have not been fully characterised.

View Article and Find Full Text PDF

Mutations to the copper-dependent enzyme Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans, and transgenic overexpression of mutant SOD1 represents a robust murine model of the disease. We have previously shown that the copper-containing compound Cu(atsm) phenotypically improves mutant SOD1 mice and delivers copper to copper-deficient SOD1 in the CNS to restore its physiological function. Cu(atsm) is now in clinical trials for the treatment of ALS.

View Article and Find Full Text PDF

Ubiquitous expression of mutant Cu/Zn-superoxide dismutase (SOD1) selectively affects motor neurons in the central nervous system (CNS), causing the adult-onset degenerative disease amyotrophic lateral sclerosis (ALS). The CNS-specific impact of ubiquitous mutant SOD1 expression is recapitulated in transgenic mouse models of the disease. Here we present outcomes for the metallo-complex Cu(atsm) tested for therapeutic efficacy in mice expressing SOD1 on a mixed genetic background.

View Article and Find Full Text PDF

Mutations to the ubiquitous antioxidant enzyme Cu/Zn superoxide dismutase (SOD1) were the first established genetic cause of the fatal, adult-onset neurodegenerative disease amyotrophic lateral sclerosis (ALS). It is widely accepted that these mutations do not cause ALS via a loss of antioxidant function, but elucidating the alternate toxic gain of function has proven to be elusive. Under physiological conditions, SOD1 binds one copper ion and one zinc ion per monomer to form a highly stable and functional homodimer, but there is now ample evidence to indicate aberrant persistence of SOD1 in an intermediate metal-deficient state may contribute to the protein's involvement in ALS.

View Article and Find Full Text PDF

All cases of Huntington's disease (HD) are caused by mutant huntingtin protein (mhtt), yet the molecular mechanisms that link mhtt to disease symptoms are not fully elucidated. Given glycogen synthase kinase-3 (GSK3) is implicated in several neurodegenerative diseases as a molecular mediator of neuronal decline and widely touted as a therapeutic target, we investigated GSK3 in cells expressing mhtt, brains of R6/1 HD mice and post-mortem human brain samples. Consistency in data across the two models and the human brain samples indicate decreased GSK3 signalling contributes to neuronal dysfunction in HD.

View Article and Find Full Text PDF