Publications by authors named "James B Flanegan"

The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showed that 3D entered the replication complex in the form of its precursor, P3 (or 3CD), and was cleaved to release active 3D polymerase.

View Article and Find Full Text PDF

The mechanism of amiloride inhibition of Coxsackievirus B3 (CVB3) and poliovirus type 1 (PV1) RNA replication was investigated using membrane-associated RNA replication complexes. Amiloride was shown to inhibit viral RNA replication and VPgpUpU synthesis. However, the drug had no effect on polymerase elongation activity during either (-) strand or (+) strand synthesis.

View Article and Find Full Text PDF

The genomic RNA of poliovirus and closely related picornaviruses perform template and non-template functions during viral RNA replication. The non-template functions are mediated by cis-active RNA sequences that bind viral and cellular proteins to form RNP complexes. The RNP complexes mediate temporally dynamic, long-range interactions in the viral genome and ensure the specificity of replication.

View Article and Find Full Text PDF

In this study, we showed that the 5'CL-PCBP complex, 3' poly(A) tail and viral protein 2A(pro) are all required for optimal translation of PV RNA. The 2A(pro)-mediated stimulation of translation was observed in the presence or absence of both the 5'CL and the 3' poly(A) tail. Using protein-RNA tethering, we established that the 5'CL-PCBP complex is required for optimal viral RNA translation and identified the KH3 domain of PCBP2 as the functional region.

View Article and Find Full Text PDF

Using cell-free reactions, we investigated the role of the 5' cloverleaf (5'CL) and associated C-rich sequence in Coxsackievirus B3 RNA replication. We showed that the binding of poly(C) binding protein (PCBP) to the C-rich sequence was the primary determinant of RNA stability. In addition, inhibition of negative-strand synthesis was only observed when PCBP binding to both stem-loop 'b' and the C-rich sequence was inhibited.

View Article and Find Full Text PDF

The exploitation of cellular functions and host proteins is an essential part of viral replication. The study of this interplay has provided significant insight into host cell processes in addition to advancing the understanding of the viral life-cycle. Poliovirus utilizes a multifunctional cellular protein, poly(C) binding protein 2 (PCBP2), for RNA stability, translation and RNA replication.

View Article and Find Full Text PDF

Poliovirus 2A(pro) is required for the inhibition of host cell protein synthesis and efficient viral replication. We investigated the role of 2A(pro) in regulating viral RNA stability, translation and replication in HeLa S10 reactions. The protease activity of 2A(pro) or its polyprotein precursors, 2AB or P2, was required to increase the stability of viral RNA and prolong translation.

View Article and Find Full Text PDF

The precise relationship between the length of the 3' poly(A) tail and the replication and infectivity of poliovirus RNA was examined in this study. With both poly(A)(11) and poly(A)(12) RNAs, negative-strand synthesis was 1-3% of the level observed with poly(A)(80) RNA. In contrast, increasing the length of the poly(A) tail from (A)(12) to (A)(13) resulted in about a ten-fold increase in negative-strand synthesis.

View Article and Find Full Text PDF

The 5' cloverleaf in poliovirus RNA has a direct role in regulating the stability, translation, and replication of viral RNA. In this study, we investigated the role of stem a in the 5' cloverleaf in regulating the stability and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Our results showed that disrupting the duplex structure of stem a destabilized viral RNA and inhibited efficient negative-strand synthesis.

View Article and Find Full Text PDF

The cre(2C) hairpin is a cis-acting replication element in poliovirus RNA and serves as a template for the synthesis of VPgpUpU. We investigated the role of the cre(2C) hairpin on VPgpUpU synthesis and viral RNA replication in preinitiation RNA replication complexes isolated from HeLa S10 translation-RNA replication reactions. cre(2C) hairpin mutations that block VPgpUpU synthesis in reconstituted assays with purified VPg and poliovirus polymerase were also found to completely inhibit VPgpUpU synthesis in preinitiation replication complexes.

View Article and Find Full Text PDF

The replication proteins encoded in the P2 region of the poliovirus genome induce extensive rearrangement of cellular membranes into vesicles and are a required component of viral RNA replication complexes. To identify distinct viral protein(s) from the P2 region of the genome that were required to form functional RNA replication complexes, the P2 proteins were expressed in addition to P3 in HeLa S10 translation-RNA replication reactions. Membrane-associated preinitiation replication complexes were isolated from these reactions and used to measure negative-strand synthesis.

View Article and Find Full Text PDF