In vitro determination of hemolytic properties is a common and important method for preliminary evaluation of cytotoxicity of chemicals, drugs, or any blood-contacting medical device or material. The method itself is relatively straightforward, however, protocols used in the literature vary substantially. This leads to significant difficulties both in interpreting and in comparing the obtained values.
View Article and Find Full Text PDFMicrobe exposure to pharmaceutical and non-pharmaceutical agents plays a role in the development of antibiotic resistance. The risks and consequences associated with extensive disinfectant use during the COVID-19 pandemic remain unclear. Some disinfectants, like sanitizers, contain genotoxic chemicals that damage microbial DNA, like phenol and hydrogen peroxide.
View Article and Find Full Text PDFExtracellular pH has been assumed to play little if any role in how bacteria respond to antibiotics and antibiotic resistance development. Here, we show that the intracellular pH of Escherichia coli equilibrates to the environmental pH following treatment with the DNA damaging antibiotic nalidixic acid. We demonstrate that this allows the environmental pH to influence the transcription of various DNA damage response genes and physiological processes such as filamentation.
View Article and Find Full Text PDFSingle-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs.
View Article and Find Full Text PDF