Publications by authors named "James Abbas"

Despite advances in wearable robots across various fields, there is no consensus definition or design framework for the application of this technology in rehabilitation or musculoskeletal (MSK) injury prevention. This paper aims to define wearable robots and explore their applications and challenges for military rehabilitation and force protection for MSK injury prevention. We conducted a modified Delphi method, including a steering group and 14 panelists with 10+ years of expertise in wearable robots.

View Article and Find Full Text PDF

Mechanical ventilation is the standard treatment when volitional breathing is insufficient, but drawbacks include muscle atrophy, alveolar damage, and reduced mobility. Respiratory pacing is an alternative approach using electrical stimulation-induced diaphragm contraction to ventilate the lung. Oxygenation and acid-base homeostasis are maintained by matching ventilation to metabolic needs; however, current pacing technology requires manual tuning and does not respond to dynamic user-specific metabolic demand, thus requiring re-tuning of stimulation parameters as physiological changes occur.

View Article and Find Full Text PDF

Spatiotemporal parameters of gait serve as an important biomarker to monitor gait impairments as well as to develop rehabilitation systems. In this work, we developed a computationally-efficient algorithm (SDI-Step) that uses segmented double integration to calculate step length and step time from wearable inertial measurement units (IMUs) and assessed its ability to reliably and accurately measure spatiotemporal gait parameters. Two data sets that included simultaneous measurements from wearable sensors and from a laboratory-based system were used in the assessment.

View Article and Find Full Text PDF
Article Synopsis
  • The Nuss procedure involves placing bars to repair pectus excavatum, which may hinder chest movement and compliance during CPR.
  • Research indicates that these bars significantly reduce the depth of chest compressions and increase the force needed to achieve proper compression depth.
  • There's potential for using active abdominal compressions and decompressions (AACD) as an alternative CPR method for patients with Nuss bars, warranting further study.
View Article and Find Full Text PDF

In this interview, we spoke with Ranu and James at SfN Neuroscience (19-23 October 2019, Chicago, IL, USA) to discover more about their collaboration on a clinical trial aiming to improve the lives of American veterans and service members who have lost limbs. The clinical trial involves the adaptive neural systems neural-enabled prosthetic hand system [1,2].

View Article and Find Full Text PDF

The main motor impairments of gait and balance experienced by people with Parkinson's disease (PD) contribute to a sedentary lifestyle, resulting in poor physical conditioning, loss of functional independence, and reduced quality of life. Despite the known benefits of physical activity in PD, the majority of older adults with PD are insufficiently active. Few studies incorporate behavioral change approaches to promoting physical activity in PD.

View Article and Find Full Text PDF

Progressive gait dysfunction is one of the primary motor symptoms in people with Parkinson's disease (PD). It is generally expressed as reduced step length and gait speed and as increased variability in step time and step length. People with PD also exhibit stooped posture which disrupts gait and impedes social interaction.

View Article and Find Full Text PDF

Ventilatory pacing by electrical stimulation of the phrenic nerve or of the diaphragm has been shown to enhance quality of life compared to mechanical ventilation. However, commercially available ventilatory pacing devices require initial manual specification of stimulation parameters and frequent adjustment to achieve and maintain suitable ventilation over long periods of time. Here, we have developed an adaptive, closed-loop, neuromorphic, pattern-shaping controller capable of automatically determining a suitable stimulation pattern and adapting it to maintain a desired breath-volume profile on a breath-by-breath basis.

View Article and Find Full Text PDF

Current myoelectric prosthetic limbs are limited in their ability to provide direct sensory feedback to users, which increases attentional demands and reliance on visual cues. Vibrotactile sensory substitution (VSS), which can be used to provide sensory feedback in a non-invasive manner has demonstrated some improvement in myoelectric hand control. In this work, we developed and tested two VSS configurations: one with a single burst-rate modulated actuator and another with a spatially distributed array of five coin tactors.

View Article and Find Full Text PDF

The network of peripheral nerves presents extraordinary potential for modulating and/or monitoring the functioning of internal organs or the brain. The degree to which these pathways can be used to influence or observe neural activity patterns will depend greatly on the quality and specificity of the bionic interface. The anatomical organization, which consists of multiple nerve fibers clustered into fascicles within a nerve bundle, presents opportunities and challenges that may necessitate insertion of electrodes into individual fascicles to achieve the specificity that may be required for many clinical applications.

View Article and Find Full Text PDF

Functional Electrical Stimulation can be used to restore motor functions loss consecutive to spinal cord injury, such as respiratory deficiency due to paralysis of ventilatory muscles. This paper presents a fully configurable IC-centered stimulator designed to investigate muscle stimulation paradigms. It provides 8 current stimulation channels with high-voltage compliance and real-time operation capabilities, to enable a wide range of FES applications.

View Article and Find Full Text PDF

In the two decades after 1990, the rates of child and maternal mortality dropped by over 40% and 47%, respectively. Despite these improvements, which are in part due to increased access to medical technologies, profound health disparities exist. In 2015, a child born in a developing region is nearly eight times as likely to die before the age of 5 than one born in a developed region and developing regions accounted for nearly 99% of the maternal deaths.

View Article and Find Full Text PDF

Locomotion requires coordination of leg joints to maintain stability and to maneuver. We studied leg joint function during constant-average-velocity running and the sagittal-plane maneuvers of step ascent and descent. We tested two hypotheses: (1) that leg joints perform distinct functions during locomotion; and (2) that humans select functional parameters to maximize intrinsic dynamic stability.

View Article and Find Full Text PDF

Objective: To evaluate the effects of 12-week polestriding intervention on gait and disease severity in people with mild to moderate Parkinson disease (PD).

Design: A-B-A withdrawal study design.

Setting: Outpatient movement disorder center and community facility.

View Article and Find Full Text PDF

We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls.

View Article and Find Full Text PDF

Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA).

View Article and Find Full Text PDF

For people with Parkinson's disease (PD), gait and postural impairments can significantly affect their ability to perform activities of daily living. Presentation of appropriate cues has been shown to improve gait in PD. Based on this, a treadmill-based system and experimental paradigm were developed to determine if people with PD can utilize real-time feedback (RTFB) of step length or back angle (uprightness) to improve gait and posture.

View Article and Find Full Text PDF

Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear.

View Article and Find Full Text PDF

Decoding motor intent from recorded neural signals is essential for the development of effective neural-controlled prostheses. To facilitate the development of online decoding algorithms we have developed a software platform to simulate neural motor signals recorded with peripheral nerve electrodes, such as longitudinal intrafascicular electrodes (LIFEs). The simulator uses stored motor intent signals to drive a pool of simulated motoneurons with various spike shapes, recruitment characteristics, and firing frequencies.

View Article and Find Full Text PDF

Background: Several neural interface technologies that stimulate and/or record from groups of axons have been developed. The longitudinal intrafascicular electrode (LIFE) is a fine wire that can provide access to a discrete population of axons within a peripheral nerve fascicle. Some applications require, or would benefit greatly from, technology that could provide access to multiple discrete sites in several fascicles.

View Article and Find Full Text PDF

Background: Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury.

Methods: 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury.

View Article and Find Full Text PDF

A traumatic spinal injury can destroy cells, irreparably damage axons, and trigger a cascade of biochemical responses that increase the extent of injury. Although damaged central nervous system axons do not regrow well naturally, the distributed nature of the nervous system and its capacity to adapt provide opportunities for recovery of function. It is apparent that activity-dependent plasticity plays a role in this recovery and that the endogenous response to injury heightens the capacity for recovery for at least several weeks postinjury.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is now widely used to alleviate symptoms of Parkinson's disease (PD). The specific aim of this study was to identify posture control measures that may be used to improve selection of DBS parameters in the clinic and this was carried out by changing the DBS stimulation amplitude. A dynamic posture shift paradigm was used to assess posture control in 4 PD STN-DBS subjects.

View Article and Find Full Text PDF

Objective: To investigate the longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury.

Design: Case series.

Setting: Research or outpatient physical therapy departments of 4 academic hospitals.

View Article and Find Full Text PDF