Publications by authors named "James A. Thomson"

Article Synopsis
  • The blue whale is the largest animal ever known, making its genome a key subject for studying longevity and cancer resistance.
  • Researchers created a detailed genome assembly of the blue whale using advanced sequencing methods and collaborated with databases like NCBI for annotation.
  • Findings revealed significant gene amplifications linked to the blue whale's size and genetic variations between Pacific and Atlantic populations, highlighting the genome's potential for future biological and conservation studies.
View Article and Find Full Text PDF

Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads.

View Article and Find Full Text PDF
Article Synopsis
  • Sus scrofa domesticus (pigs) are valuable for biomedical research due to their physiological similarities to humans, making them excellent models for studying regenerative biology.
  • Researchers developed transgene-free porcine induced pluripotent stem cells (PiPSCs) from pig fibroblasts using targeted protocols, allowing these cells to differentiate into various cell types and maintain their species-specific developmental characteristics.
  • The establishment of a porcine in vitro segmentation clock model highlights the potential of transgene-free PiPSCs for advancing our understanding of mammalian development and disease while offering new avenues for transplantation research.
View Article and Find Full Text PDF

Type 2 diabetes is a challenge in modern healthcare, and animal models are necessary to identify underlying mechanisms. The Nile rat (Arvicanthis niloticus) develops diet-induced diabetes rapidly on a conventional rodent chow diet without genetic or chemical manipulation. Unlike common laboratory models, the outbred Nile rat model is diurnal and has a wide range of overt diabetes onset and diabetes progression patterns in both sexes, better mimicking the heterogeneous diabetic phenotype in humans.

View Article and Find Full Text PDF

Diabetic retinopathy is a common complication of long-term diabetes and that could lead to vision loss. Unfortunately, early diabetic retinopathy remains poorly understood. There is no effective way to prevent or treat early diabetic retinopathy until patients develop later stages of diabetic retinopathy.

View Article and Find Full Text PDF

Hemogenic endothelium (HE) is the main source of blood cells in the embryo. To improve blood manufacturing from human pluripotent stem cells (hPSCs), it is essential to define the molecular determinants that enhance HE specification and promote development of the desired blood lineage from HE. Here, using SOX18-inducible hPSCs, we revealed that SOX18 forced expression at the mesodermal stage, in contrast to its homolog SOX17, has minimal effects on arterial specification of HE, expression of HOXA genes and lymphoid differentiation.

View Article and Find Full Text PDF

Aims: We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)].

Methods And Results: hCMPs were generated in a fibrin scaffold.

View Article and Find Full Text PDF

Macrophages armed with chimeric antigen receptors (CARs) provide a potent new option for treating solid tumors. However, genetic engineering and scalable production of somatic macrophages remains significant challenges. Here, we used CRISPR-Cas9 gene editing methods to integrate an anti-GD2 CAR into the AAVS1 locus of human pluripotent stem cells (hPSCs).

View Article and Find Full Text PDF

RNA sequencing (RNA-seq) has been a widely used high-throughput method to characterize transcriptomic dynamics spatiotemporally. However, RNA-seq data analysis pipelines typically depend on either a sequenced genome and/or corresponding reference transcripts. This limitation is a challenge for species lacking sequenced genomes and corresponding reference transcripts.

View Article and Find Full Text PDF

Background: The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.

Results: We report a 2.

View Article and Find Full Text PDF

Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear.

View Article and Find Full Text PDF

Adoptive therapies with genetically modified somatic T cells rendered HIV resistance have shown promise for AIDS therapy. A renewable source of HIV-resistant human T cells from induced pluripotent stem cells (iPSCs) would further facilitate and broaden the applicability of these therapies. Here, we report successful targeting of the CCR5 locus in iPSCs generated from T cells (T-iPSCs) or fibroblasts (fib-iPSCs) from Mauritian cynomolgus macaques (MCM), using CRISPR-Cas9 technology.

View Article and Find Full Text PDF

Nonhuman primates (NHPs) represent one of the most important models for preclinical studies of novel biomedical interventions. In contrast with small animal models, however, widespread utilization of NHPs is restricted by cost, logistics, and availability. Therefore, we sought to develop a translational primatized mouse model, akin to a humanized mouse, to allow for high-throughput in vivo experimentation leveraged to inform large animal immunology-based studies.

View Article and Find Full Text PDF

Primary hepatocytes are widely used in the pharmaceutical industry to screen drug candidates for hepatotoxicity, but hepatocytes quickly dedifferentiate and lose their mature metabolic function in culture. Attempts have been made to better recapitulate the in vivo liver environment in culture, but the full spectrum of signals required to maintain hepatocyte function ex vivo remains elusive. To elucidate molecular changes that accompany, and may contribute to dedifferentiation of hepatocytes ex vivo, we performed lineage tracing and comprehensive profiling of alterations in their gene expression profiles and chromatin landscape during culture.

View Article and Find Full Text PDF

Considerable effort has been devoted to refining experimental protocols to reduce levels of technical variability and artifacts in single-cell RNA-sequencing data (scRNA-seq). We here present evidence that equalizing the concentration of cDNA libraries prior to pooling, a step not consistently performed in single-cell experiments, improves gene detection rates, enhances biological signals, and reduces technical artifacts in scRNA-seq data. To evaluate the effect of equalization on various protocols, we developed Scaffold, a simulation framework that models each step of an scRNA-seq experiment.

View Article and Find Full Text PDF

Intimal hyperplasia, thrombosis formation, and delayed endothelium regeneration are the main causes that restrict the clinical applications of PTFE small-diameter vascular grafts (inner diameter < 6 mm). An ideal strategy to solve such problems is to facilitate in situ endothelialization. Since the natural vascular endothelium adheres onto the basement membrane, which is a specialized form of extracellular matrix (ECM) secreted by endothelial cells (ECs) and smooth muscle cells (SMCs), functionalizing PTFE with an ECM coating was proposed.

View Article and Find Full Text PDF

Derivation and culture of small hepatocyte progenitor cells (SHPCs) capable of proliferating has been described in rodents and recently in humans. These cells are capable of engrafting in injured livers, however, they display de-differentiated morphology and reduced xenobiotic metabolism activity in culture over passages. Here we report that SHPCs derived from adult primary human hepatocytes (PHHs) and cultured on mouse embryonic fibroblasts (MEFs) not only display differentiated morphology and exhibit gene expression profiles similar to adult PHHs, but importantly, they retain their phenotype over several passages.

View Article and Find Full Text PDF

Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline.

View Article and Find Full Text PDF

SOX17 has been implicated in arterial specification and the maintenance of hematopoietic stem cells (HSCs) in the murine embryo. However, knowledge about molecular pathways and stage-specific effects of SOX17 in humans remains limited. Here, using SOX17-knockout and SOX17-inducible human pluripotent stem cells (hPSCs), paired with molecular profiling studies, we reveal that SOX17 is a master regulator of HOXA and arterial programs in hemogenic endothelium (HE) and is required for the specification of HE with robust lympho-myeloid potential and DLL4CXCR4 phenotype resembling arterial HE at the sites of HSC emergence.

View Article and Find Full Text PDF

Previous studies have reported that maternal malnutrition is linked to increased risk of developing type 2 diabetes in adulthood. Although several diabetic risk factors associated with early-life environment have been identified, protective factors remain elusive. Here, we conducted a longitudinal study with 671 Nile rats whereby we examined the interplay between early-life environment (maternal diet) and later-life environment (offspring diet) using opposing diets that induce or prevent diet-induced diabetes.

View Article and Find Full Text PDF

As newer single-cell protocols generate increasingly more cells at reduced sequencing depths, the value of a higher read depth may be overlooked. Using data from three different single-cell RNA-seq protocols that lend themselves to having either higher read depth (Smart-seq) or many cells (MARS-seq and 10X), we evaluate their ability to recapitulate biological signals in the context of spatial reconstruction. Overall, we find gene expression profiles after spatial reconstruction analysis are highly reproducible between datasets despite being generated by different protocols and using different computational algorithms.

View Article and Find Full Text PDF

Cardiovascular diseases plague human health because of the lack of transplantable small-diameter blood vessel (SDBV) grafts. Although expanded polytetrafluoroethylene (ePTFE) has the potential to be used as a biocompatible material for SDBV grafts, long-term patency is still the biggest challenge. As discussed in this paper, by virtue of a novel material formulation and a new and benign alcohol/water lubricating agent, biofunctionalized ePTFE blood vessel grafts aimed at providing long-term patency were fabricated.

View Article and Find Full Text PDF

There is a vital need to develop in vitro models of the developing human brain to recapitulate the biological effects that toxic compounds have on the brain. To model perineural vascular plexus (PNVP) in vitro, which is a key stage in embryonic development, human embryonic stem cells (hESC)-derived endothelial cells (ECs), neural progenitor cells, and microglia (MG) with primary pericytes (PCs) in synthetic hydrogels in a custom-designed microfluidics device are cocultured. The formation of a vascular plexus that includes networks of ECs (CD31+, VE-cadherin+), MG (IBA1+), and PCs (PDGFRβ+), and an overlying neuronal layer that includes differentiated neuronal cells (βIII Tubulin+, GFAP+) and radial glia (Nestin+, Notch2NL+), are characterized.

View Article and Find Full Text PDF

Treatment of cardiovascular diseases suffers from the lack of transplantable small-diameter blood vessel (SDBV) grafts that can prohibit/eliminate thrombosis. Although expanded poly(tetrafluoroethylene) (ePTFE) has the potential to be used for SDBV grafts, recurrence of thrombus remains the biggest challenge. In this study, a reactive oxygen species (ROS)-responsive antithrombogenic drug synthesis and a bulk coating process were employed to fabricate functional ePTFE grafts capable of prohibiting/eliminating blood clots.

View Article and Find Full Text PDF

Comparative time series transcriptome analysis is a powerful tool to study development, evolution, aging, disease progression and cancer prognosis. We develop TimeMeter, a statistical method and tool to assess temporal gene expression similarity, and identify differentially progressing genes where one pattern is more temporally advanced than the other. We apply TimeMeter to several datasets, and show that TimeMeter is capable of characterizing complicated temporal gene expression associations.

View Article and Find Full Text PDF