Publications by authors named "James A Snipes"

Article Synopsis
  • Brain-derived extracellular vesicles (EVs) are key players in Alzheimer's disease, acting as potential biomarkers due to the protection of their internal cargo from degradation.
  • * A new method was developed to collect EVs from the hippocampal interstitial fluid of live mice, with specific techniques used for isolation and characterization.
  • * Findings indicate that, in a model of Alzheimer’s, the protein concentration in EVs increases while protein diversity decreases with amyloid-beta deposition, and notable differences were observed based on sex regarding microglial EV proteome.
View Article and Find Full Text PDF

Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-β (Aβ) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.

View Article and Find Full Text PDF

Background: Kidney risk variants (KRVs) in the gene are associated with mitochondrial dysfunction. However, the molecular spectrum of metabolites affected by the G1 and G2 KRVs, and the downstream mitochondrial pathways they affect, remain unknown.

Methods: We performed a metabolomics analysis using HEK293 Tet-on cells conditionally expressing G0, G1, and G2 KRVs to determine the patterns of metabolites and pathways potentially involved in nephropathy.

View Article and Find Full Text PDF

Background: Apolipoprotein L1 gene (APOL1) G1 and G2 kidney-risk variants (KRVs) cause CKD in African Americans, inducing mitochondrial dysfunction. Modifying factors are required, because a minority of individuals with APOL1 high-risk genotypes develop nephropathy. Given that APOL1 function is pH-sensitive and the pH of the kidney interstitium is <7, we hypothesized the acidic kidney interstitium may facilitate APOL1 KRV-induced mitochondrial dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • G1 and G2 nephropathy-risk variants lead to mitochondrial dysfunction, contributing to kidney disease, with a focus on genetic regulation and mechanisms involved in nephropathy.
  • A gene expression analysis was conducted on renal tubule cells from African American individuals, alongside knockout and cell rescue experiments to investigate the effects of specific SNPs and their relation to gene expression.
  • Findings indicate that mitochondrial dynamics are altered by G1 and G2 variants, with potential therapeutic targets identified for mitigating -nephropathy through the regulation of mitochondrial fusion and fission.
View Article and Find Full Text PDF

Background: Viral infections can trigger chronic kidney disease (CKD) and the urine virome may inform risk. The Natural History of APOL1-Associated Nephropathy Study (NHAANS) reported that urine JC polyomavirus (JCPyV) associated with a lower risk of APOL1-associated nephropathy in African Americans. Herein, association was assessed between urine JCPyV with CKD in African Americans independent from the APOL1 genotype.

View Article and Find Full Text PDF

G1 and G2 variants facilitate kidney disease in blacks. To elucidate the pathways whereby these variants contribute to disease pathogenesis, we established HEK293 cell lines stably expressing doxycycline-inducible (Tet-on) reference G0 or the G1 and G2 renal-risk variants, and used Illumina human HT-12 v4 arrays and Affymetrix HTA 2.0 arrays to generate global gene expression data with doxycycline induction.

View Article and Find Full Text PDF

APOL1 gene renal-risk variants are associated with nephropathy and CVD in African Americans; however, little is known about the circulating APOL1 variant proteins which reportedly bind to HDL. We examined whether APOL1 G1 and G2 renal-risk variant serum concentrations or lipoprotein distributions differed from nonrisk G0 APOL1 in African Americans without nephropathy. Serum APOL1 protein concentrations were similar regardless of APOL1 genotype.

View Article and Find Full Text PDF

Although APOL1 gene variants are associated with nephropathy in African Americans, little is known about APOL1 protein synthesis, uptake, and localization in kidney cells. To address these questions, we examined APOL1 protein and mRNA localization in human kidney and human kidney-derived cell lines. Indirect immunofluorescence microscopy performed on nondiseased nephrectomy cryosections from persons with normal kidney function revealed that APOL1 protein was markedly enriched in podocytes (colocalized with synaptopodin and Wilms' tumor suppressor) and present in lower abundance in renal tubule cells.

View Article and Find Full Text PDF

Acetyl coenzyme A carboxylase B gene (ACACB) single nucleotide polymorphism (SNP) rs2268388 is reproducibly associated with type 2 diabetes (T2DM)-associated nephropathy (DN). ACACB knock-out mice are also protected from obesity. This study assessed relationships between rs2268388, body mass index (BMI) and gene expression in multiple populations, with and without T2DM.

View Article and Find Full Text PDF

Objective: Mitochondrial depolarization after ATP-sensitive potassium channel activation has been shown to induce cerebral vasodilation by the generation of calcium sparks in smooth muscle. It is unclear, however, whether mitochondrial depolarization in endothelial cells is capable of promoting vasodilation by releasing vasoactive factors. Therefore, we studied the effect of endothelial mitochondrial depolarization by mitochondrial ATP-sensitive potassium channel activators, BMS-191095 (BMS) and diazoxide, on endothelium-dependent vasodilation.

View Article and Find Full Text PDF

Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL.

View Article and Find Full Text PDF

Insulin resistance (IR) impairs cerebrovascular responses to several stimuli in Zucker obese (ZO) rats. However, cerebral artery responses after subarachnoid hemorrhage (SAH) have not been described in IR. We hypothesized that IR worsens vascular reactions after a mild SAH.

View Article and Find Full Text PDF

We tested whether rosuvastatin (RST) protected against excitotoxic neuronal cell death in rat primary cortical neuronal cultures. L-glutamate (200 microM, 1h) reduced neuronal viability (% of naive controls, mean+/-SEM, n=8-32, *p<0.05) from 100+/-2% to 60+/-1%*, but pretreatment with RST (0.

View Article and Find Full Text PDF

Effects of insulin on cerebral arteries have never been examined. Therefore, we determined cerebrovascular actions of insulin in rats. Both PCR and immunoblot studies identified insulin receptor expression in cerebral arteries and in cultured cerebral microvascular endothelial cells (CMVECs).

View Article and Find Full Text PDF

Objective: N-methyl-d-aspartate (NMDA) is a powerful cerebrovascular dilator in vivo. Cortical spreading depression (CSD) has recently been shown to contribute to the pial arteriolar dilation in mice. Our main aim was to examine the participation of CSD in the overall cerebrovascular response to NMDA in the rat.

View Article and Find Full Text PDF

The objectives of our present experiments were to determine whether the BK(Ca) channel agonist NS1619 is able to induce immediate preconditioning in cultured rat cortical neurons and to elucidate the role of BK(Ca) channels in the initiation of immediate preconditioning. NS1619 depolarized mitochondria and increased reactive oxygen species (ROS) generation, but neither of these effects was inhibited by BK(Ca) channel antagonists. NS1619 also activated the extracellular signal-regulated kinase signaling pathways.

View Article and Find Full Text PDF

Reduced availability of reactive oxygen species is a key component of neuroprotection against various toxic stimuli. Recently we showed that the hydrogen peroxide scavenger catalase plays a central role in delayed preconditioning induced by the mitochondrial ATP-sensitive potassium channel opener BMS-191095. The purpose of the experiments discussed here was to investigate the neuroprotective effect of catalase in vitro using a recombinant adenoviral catalase gene transfer protocol.

View Article and Find Full Text PDF

Mitochondria affect cerebrovascular tone by activation of mitochondrial ATP-sensitive K+ (K ATP) channels and generation of reactive oxygen species (ROS). Insulin resistance accompanying obesity causes mitochondrial dysfunction, but the consequences on the cerebral circulation have not been fully identified. We evaluated the mitochondrial effects of diazoxide, a putative mitochondrial K ATP channel activator, on cerebral arteries of Zucker obese (ZO) rats with insulin resistance and lean (ZL) controls.

View Article and Find Full Text PDF

We tested whether rosuvastatin (RST) protected against oxygen-glucose deprivation (OGD)-induced cell death in primary rat cortical neuronal cultures. OGD reduced neuronal viability (%naive controls, mean +/- SE, n = 24-96, P < 0.05) to 44 +/- 1%, but 3-day pretreatment with RST (5 microM) increased survival to 82 +/- 2% (P < 0.

View Article and Find Full Text PDF

Previously, we have shown that the selective mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener BMS-191095 (BMS) induces neuronal preconditioning (PC); however, the exact mechanism of BMS-induced neuroprotection remains unclear. In this study, we have identified key components of the cascade resulting in delayed neuronal PC with BMS using isolated rat brain mitochondria and primary cultures of rat cortical neurons. BMS depolarized isolated mitochondria without an increase in reactive oxygen species (ROS) generation and induced rapid phosphorylation of Akt and glycogen synthase kinase-3beta.

View Article and Find Full Text PDF

1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619), a potent activator of the large conductance Ca2+ activated potassium (BK(Ca)) channel, has been demonstrated to induce preconditioning (PC) in the heart. The aim of our study was to test the delayed PC effect of NS1619 in rat cortical neuronal cultures against oxygen-glucose deprivation, H2O2, or glutamate excitotoxicity. We also investigated its actions on reactive oxygen species (ROS) generation, and on mitochondrial and plasma membrane potentials.

View Article and Find Full Text PDF

It has recently been shown that the antianginal drug bepridil (BEP) activates mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels and thus confers cardioprotection. Our aim was to investigate whether BEP could induce preconditioning in cultured rat cortical neurons. Although BEP depolarized isolated and in situ mitochondria and increased reactive oxygen species generation, no acute protection was observed.

View Article and Find Full Text PDF

The nuclear enzyme poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays a significant role in postischemic brain injury. We assessed the contribution of PARP activation to the blood-brain barrier (BBB) disruption and edema formation after ischemia-reperfusion. In male Wistar rats, global cerebral ischemia was achieved by occluding the carotid arteries and lowering arterial blood pressure for 20 mins.

View Article and Find Full Text PDF

Previous studies raised the possibility that nitric oxide synthase is present in heart mitochondria (mtNOS) and the existence of such an enzyme became generally accepted. However, original experimental evidence is rather scarce and positive identification of the enzyme is lacking. We aimed to detect an NOS protein in human and mouse heart mitochondria and to measure the level of NO released from the organelles.

View Article and Find Full Text PDF