Publications by authors named "James A Slavin"

The Martian crustal magnetic anomalies present a varied, asymmetric obstacle to the imposing draped interplanetary magnetic field (IMF) and solar wind plasma. Magnetic reconnection, a ubiquitous plasma phenomenon responsible for transferring energy and changing magnetic field topology, has been observed throughout the Martian magnetosphere. More specifically, reconnection can occur as a result of the interaction between crustal fields and the IMF, however, the global implications and changes to the overall magnetospheric structure of Mars have yet to be fully understood.

View Article and Find Full Text PDF

The properties and acceleration mechanisms of electrons (<200 keV) associated with a pair of tailward traveling flux ropes and accompanied reconnection X-lines in Earth's plasma sheet are investigated with MMS measurements. Energetic electrons are enhanced on both boundaries and core of the flux ropes. The power-law spectra of energetic electrons near the X-lines and in flux ropes are harder than those on flux rope boundaries.

View Article and Find Full Text PDF

Europa's plasma interaction is inextricably coupled to its O atmosphere by the chemical processes that generate plasma from the atmosphere and the sputtering of magnetospheric plasma against Europa's ice to generate O. Observations of Europa's atmosphere admit a range of possible densities and spatial distributions (Hall et al., 1998, https://doi.

View Article and Find Full Text PDF

At Mercury, several processes can release ions and neutrals out of the planet's surface. Here we present enhancements of planetary ions (Na-group ions) in Mercury's northern magnetospheric cusp during flux transfer event (FTE) "showers." FTE showers are intervals of intense dayside magnetopause reconnection, during which FTEs are observed in quick succession, that is, only separated by a few seconds.

View Article and Find Full Text PDF

We expand on previous observations of magnetic reconnection in Jupiter's magnetosphere by constructing a survey of ion-inertial scale plasmoids in the Jovian magnetotail. We developed an automated detection algorithm to identify reversals in the component and performed the minimum variance analysis for each identified plasmoid to characterize its helical structure. The magnetic field observations were complemented by data collected using the Juno Waves instrument, which is used to estimate the total electron density, and the JEDI energetic particle detectors.

View Article and Find Full Text PDF

We present the first investigation and quantification of the photoionization loss process to Mercury's sodium exosphere from spacecraft and ground-based observations. We analyze plasma and neutral sodium measurements from NASA's MESSENGER spacecraft and the THEMIS telescope. We find that the sodium ion (Na) content and therefore the significance of photoionization varies with Mercury's orbit around the Sun (i.

View Article and Find Full Text PDF

Mercury has a global dayside exosphere, with measured densities of 10 cm at ~1500 km. Here we report on the inferred enhancement of neutral densities (<10 cm) at high altitudes (~5300 km) by the MESSENGER spacecraft. Such high-altitude densities cannot be accounted for by the typical exosphere.

View Article and Find Full Text PDF

We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction.

View Article and Find Full Text PDF

We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL ~ -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization.

View Article and Find Full Text PDF

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events.

View Article and Find Full Text PDF

The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times.

View Article and Find Full Text PDF

Global measurements by MESSENGER of the fluxes of heavy ions at Mercury, particularly sodium (Na(+)) and oxygen (O(+)), exhibit distinct maxima in the northern magnetic-cusp region, indicating that polar regions are important sources of Mercury's ionized exosphere, presumably through solar-wind sputtering near the poles. The observed fluxes of helium (He(+)) are more evenly distributed, indicating a more uniform source such as that expected from evaporation from a helium-saturated surface. In some regions near Mercury, especially the nightside equatorial region, the Na(+) pressure can be a substantial fraction of the proton pressure.

View Article and Find Full Text PDF

Magnetometer data acquired by the MESSENGER spacecraft in orbit about Mercury permit the separation of internal and external magnetic field contributions. The global planetary field is represented as a southward-directed, spin-aligned, offset dipole centered on the spin axis. Positions where the cylindrical radial magnetic field component vanishes were used to map the magnetic equator and reveal an offset of 484 ± 11 kilometers northward of the geographic equator.

View Article and Find Full Text PDF

During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetic tail increased by factors of 2 to 3.5 over intervals of 2 to 3 minutes. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is lower by a factor of approximately 10 and typical durations are approximately 1 hour.

View Article and Find Full Text PDF

Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection.

View Article and Find Full Text PDF

The region around Mercury is filled with ions that originate from interactions of the solar wind with Mercury's space environment and through ionization of its exosphere. The MESSENGER spacecraft's observations of Mercury's ionized exosphere during its first flyby yielded Na+, O+, and K+ abundances, consistent with expectations from observations of neutral species. There are increases in ions at a mass per charge (m/q) = 32 to 35, which we interpret to be S+ and H2S+, with (S+ + H2S+)/(Na+ + Mg+) = 0.

View Article and Find Full Text PDF

Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity.

View Article and Find Full Text PDF

During its first flyby of Mercury, the MESSENGER spacecraft measured the planet's near-equatorial magnetic field. The field strength is consistent to within an estimated uncertainty of 10% with that observed near the equator by Mariner 10. Centered dipole solutions yield a southward planetary moment of 230 to 290 nanotesla RM3 (where RM is Mercury's mean radius) tilted between 5 degrees and 12 degrees from the rotation axis.

View Article and Find Full Text PDF

In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet.

View Article and Find Full Text PDF