Publications by authors named "James A Overton"

Background: While unstructured data, such as free text, constitutes a large amount of publicly available biomedical data, it is underutilized in automated analyses due to the difficulty of extracting meaning from it. Normalizing free-text data, , removing inessential variance, enables the use of structured vocabularies like ontologies to represent the data and allow for harmonized queries over it. This paper presents an adaptable tool for free-text normalization and an evaluation of the application of this tool to two different sets of unstructured biomedical data curated from the literature in the Immune Epitope Database (IEDB): age and data-location.

View Article and Find Full Text PDF

Over the past 20 years, the Immune Epitope Database (IEDB, iedb.org) has established itself as the foremost resource for immune epitope data. The IEDB catalogs published epitopes and their contextual experimental data in a freely searchable public resource.

View Article and Find Full Text PDF

Systems vaccinology studies have been used to build computational models that predict individual vaccine responses and identify the factors contributing to differences in outcome. Comparing such models is challenging due to variability in study designs. To address this, we established a community resource to compare models predicting booster responses and generate experimental data for the explicit purpose of model evaluation.

View Article and Find Full Text PDF

Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the "dry-run" prediction contest.

View Article and Find Full Text PDF

Computational models that predict an individual's response to a vaccine offer the potential for mechanistic insights and personalized vaccination strategies. These models are increasingly derived from systems vaccinology studies that generate immune profiles from human cohorts pre- and post-vaccination. Most of these studies involve relatively small cohorts and profile the response to a single vaccine.

View Article and Find Full Text PDF

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen multiple anti-SARS-CoV-2 antibodies being generated globally. It is difficult, however, to assemble a useful compendium of these biological properties if they are derived from experimental measurements performed at different sites under different experimental conditions. The Coronavirus Immunotherapeutic Consortium (COVIC) circumvents these issues by experimentally testing blinded antibodies side by side for several functional activities.

View Article and Find Full Text PDF

Similar to managing software packages, managing the ontology life cycle involves multiple complex workflows such as preparing releases, continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-line utilities to powerful ontology-engineering environmentsr. Particularly in the biomedical domain, which has developed a set of highly diverse yet inter-dependent ontologies, standardizing release practices and metadata and establishing shared quality standards are crucial to enable interoperability.

View Article and Find Full Text PDF

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction).

View Article and Find Full Text PDF

With the goal of improving the reproducibility and annotatability of MHC multimer reagent data, we present the establishment of a new data standard: Minimal Information about MHC Multimers (https://miamm.lji.org/).

View Article and Find Full Text PDF

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles.

View Article and Find Full Text PDF

The Ontology for Biomedical Investigations (OBI) underwent a focused review of assay term annotations, logic and hierarchy with a goal to improve and standardize these terms. As a result, inconsistencies in W3C Web Ontology Language (OWL) expressions were identified and corrected, and additionally, standardized design patterns and a formalized template to maintain them were developed. We describe here this informative and productive process to describe the specific benefits and obstacles for OBI and the universal lessons for similar projects.

View Article and Find Full Text PDF

The Immune Epitope Database (IEDB) freely provides experimental data regarding immune epitopes to the scientific public. The main users of the IEDB are immunologists who can easily use our web interface to search for peptidic epitopes via their simple single-letter codes. For example, 'A' stands for 'alanine'.

View Article and Find Full Text PDF

An Immune Exposure is the process by which components of the immune system first encounter a potential trigger. The ability to describe consistently the details of the Immune Exposure process was needed for data resources responsible for housing scientific data related to the immune response. This need was met through the development of a structured model for Immune Exposures.

View Article and Find Full Text PDF

Background: Ontologies are invaluable in the life sciences, but building and maintaining ontologies often requires a challenging number of distinct tasks such as running automated reasoners and quality control checks, extracting dependencies and application-specific subsets, generating standard reports, and generating release files in multiple formats. Similar to more general software development, automation is the key to executing and managing these tasks effectively and to releasing more robust products in standard forms. For ontologies using the Web Ontology Language (OWL), the OWL API Java library is the foundation for a range of software tools, including the Protégé ontology editor.

View Article and Find Full Text PDF

Background: Human immunology studies often rely on the isolation and quantification of cell populations from an input sample based on flow cytometry and related techniques. Such techniques classify cells into populations based on the detection of a pattern of markers. The description of the cell populations targeted in such experiments typically have two complementary components: the description of the cell type targeted (e.

View Article and Find Full Text PDF

The Immune Epitope Database (IEDB, iedb.org) captures experimental data confined in figures, text and tables of the scientific literature, making it freely available and easily searchable to the public. The scope of the IEDB extends across immune epitope data related to all species studied and includes antibody, T cell, and MHC binding contexts associated with infectious, allergic, autoimmune, and transplant related diseases.

View Article and Find Full Text PDF
Article Synopsis
  • - The Immune Epitope Database (IEDB) is a valuable online tool that compiles over 18,500 scientific references related to immune epitope recognition in the adaptive immune system, allowing users to search for relevant experimental data.
  • - To ensure data accuracy and consistency, the IEDB employs quality control measures such as curation rules, controlled vocabularies, and external ontology links, enhancing both the database's reliability and user experience.
  • - The integration of ontologies improves search functionality, simplifies data editing, and aids in error detection within the database, ensuring high-quality, curated information for researchers.
View Article and Find Full Text PDF

The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public.

View Article and Find Full Text PDF

Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.

View Article and Find Full Text PDF

Unlabelled: The Immune Epitope Database (IEDB) project incorporates independently developed ontologies and controlled vocabularies into its curation and search interface. This simplifies curation practices, improves the user query experience and facilitates interoperability between the IEDB and other resources. While the use of independently developed ontologies has long been recommended as a best practice, there continues to be a significant number of projects that develop their own vocabularies instead, or that do not fully utilize the power of ontologies that they are using.

View Article and Find Full Text PDF

Interoperability across data sets is a key challenge for quantitative histopathological imaging. There is a need for an ontology that can support effective merging of pathological image data with associated clinical and demographic data. To foster organized, cross-disciplinary, information-driven collaborations in the pathological imaging field, we propose to develop an ontology to represent imaging data and methods used in pathological imaging and analysis, and call it Quantitative Histopathological Imaging Ontology - QHIO.

View Article and Find Full Text PDF

The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources.

View Article and Find Full Text PDF

Background: In radiology, a vast amount of diverse data is generated, and unstructured reporting is standard. Hence, much useful information is trapped in free-text form, and often lost in translation and transmission. One relevant source of free-text data consists of reports covering the assessment of changes in tumor burden, which are needed for the evaluation of cancer treatment success.

View Article and Find Full Text PDF

Background: MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondadk84gugvkplf19tsh5eb81lmhojd47): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once