The development of non-nucleoside inhibitors targeting human cytomegalovirus (HCMV) polymerase presents a promising approach for enhancing therapeutic treatment for patients with sustained HCMV viremia. A series of non-nucleoside HCMV DNA polymerase inhibitors with various substitution groups at 2-postition of the novel pyrido[2,3-b]pyrazine core was synthesized and investigated. The study focused on optimizing HCMV polymerase inhibition while minimizing off-target inhibition of human ether-à-go-go (hERG) ion channel.
View Article and Find Full Text PDFThis study explores the relationship between structural alterations of nirmatrelvir, such as homologation and deuteration, and metabolic stability of newly synthesized derivatives. We developed a reliable synthetic protocol toward dideutero-nirmatrelvir and its homologated analogues with high isotopic incorporation. Deuteration of the primary metabolic site of nirmatrelvir provides a 3-fold improvement of its human microsomal stability but is accompanied by an increased metabolism rate at secondary sites.
View Article and Find Full Text PDFNirmatrelvir and GC373 inhibit the SARS-CoV-2 3CL protease and hinder viral replication in COVID-19. As nirmatrelvir in Paxlovid is oxidized by cytochrome P450 3A4, ritonavir is coadministered to block this. However, ritonavir undesirably alters the metabolism of other drugs.
View Article and Find Full Text PDFThe main protease of SARS-CoV-2 (M) is the most promising drug target against coronaviruses due to its essential role in virus replication. With newly emerging variants there is a concern that mutations in M may alter the structural and functional properties of protease and subsequently the potency of existing and potential antivirals. We explored the effect of 31 mutations belonging to 5 variants of concern (VOCs) on catalytic parameters and substrate specificity, which revealed changes in substrate binding and the rate of cleavage of a viral peptide.
View Article and Find Full Text PDFMany non-nucleoside human cytomegalovirus (HCMV) inhibitors have been reported in patent and scientific literature, however, none have reached commercialization despite the urgent need for new HCMV treatments. Herein we report select compounds from different templates that all had low micromolar human ether-à-go-go (hERG) ion channel IC values. We also describe a series of pyrroloquinoline derivatives that were designed and synthesized to understand the effect of various substitution on human cytomegalovirus (HCMV) polymerase activity, antiviral activity, and hERG inhibition.
View Article and Find Full Text PDFTragically, the death toll from the COVID-19 pandemic continues to rise, and with variants being observed around the globe new therapeutics, particularly direct-acting antivirals that are easily administered, are desperately needed. Studies targeting the SARS-CoV-2 3CL protease, which is critical for viral replication, with different peptidomimetics and warheads is an active area of research for development of potential drugs. To date, however, only a few publications have evaluated the nitrile warhead as a viral 3CL protease inhibitor, with only modest activity reported.
View Article and Find Full Text PDFRecurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability.
View Article and Find Full Text PDFReplication of SARS-CoV-2, the coronavirus causing COVID-19, requires a main protease (M) to cleave viral proteins. Consequently, M is a target for antiviral agents. We and others previously demonstrated that GC376, a bisulfite prodrug with efficacy as an anti-coronaviral agent in animals, is an effective inhibitor of M in SARS-CoV-2.
View Article and Find Full Text PDFThe RNA-dependent RNA polymerase (RdRp) of norovirus is an attractive target of antiviral agents aimed at providing protection against norovirus-associated gastroenteritis. Here, we perform molecular dynamics simulations of the crystal structure of norovirus RdRp in complex with several known binders, as well as free-energy simulations by free-energy perturbation (FEP) to determine binding free energies of these molecules relative to the natural nucleotide substrates. We determine experimental EC values and nucleotide incorporation efficiencies for several of these compounds.
View Article and Find Full Text PDFThe novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins, which are cleaved at specific sites by a 3C-like cysteine protease (3CL) in a post-translational processing step that is critical for coronavirus replication. The 3CL sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage.
View Article and Find Full Text PDFBlockade of the programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) interaction has emerged as a powerful strategy in cancer immunotherapy. Recently, there have been enormous efforts to develop potent PD-1/PD-L1 inhibitors. In particular, Bristol-Myers Squibb (BMS) and Aurigene Discovery Technologies have individually disclosed several promising PD-1/PD-L1 inhibitors, whose detailed experimental data are not publicly disclosed.
View Article and Find Full Text PDFA series of novel 6-(aminomethylphenoxy)benzoxaborole analogs was synthesized for the investigation of the structure-activity relationship of the inhibition of TNF-alpha, IL-1beta, and IL-6, from lipopolysaccharide stimulated peripheral blood mononuclear cells. Compounds 9d and 9e showed potent activity against all three cytokines with IC50 values between 33 and 83nM. Chloro substituted analog 9e (AN3485) is considered to be a promising lead for novel anti-inflammatory agent with a favorable pharmacokinetic profile.
View Article and Find Full Text PDFGram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms.
View Article and Find Full Text PDFWe have used boron-based molecules to create novel, competitive, reversible inhibitors of phosphodiesterase 4 (PDE4). The co-crystal structure reveals a binding configuration which is unique compared to classical catechol PDE4 inhibitors, with boron binding to the activated water in the bimetal center. These phenoxybenzoxaboroles can be optimized to generate submicromolar potency enzyme inhibitors, which inhibit TNF-α, IL-2, IFN-γ, IL-5 and IL-10 activities in vitro and show safety and efficacy for topical treatment of human psoriasis.
View Article and Find Full Text PDFDespite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle.
View Article and Find Full Text PDFA series of C-2 pyrroloquinoline analogs designed to improve aqueous solubility were examined for herpesvirus polymerase and antiviral activity. Several analogs were identified that maintained the antiviral activity of the previous development candidate against HCMV, HSV-1 and VZV, but with significantly improved aqueous solubility.
View Article and Find Full Text PDFFlutamide, a widely used nonsteroidal antiandrogen drug for the treatment of prostate cancer, has been associated with rare incidences of hepatotoxicity in patients. It is believed that bioactivation of flutamide and subsequent covalent binding to cellular proteins is responsible for its toxicity. A novel N-S glutathione adduct has been identified in a previous bioactivation study of flutamide (Kang et al.
View Article and Find Full Text PDFA novel series of 2-aryl-2-hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno[2,3-b]pyridine-5-carboxamides have been identified as potent antivirals against human herpesviruses. These compounds demonstrate broad-spectrum inhibition of the herpesvirus polymerases HCMV, HSV-1, EBV, and VZV with high specificity compared to human DNA polymerases.
View Article and Find Full Text PDFHemiasterlin is a natural product derived from marine sponges that, like other structurally diverse peptide-like molecules, binds to the Vinca-peptide site in tubulin, disrupts normal microtubule dynamics, and, at stoichiometric amounts, depolymerizes microtubules. Total synthesis of hemiasterlin and its analogues has been accomplished, and optimal pharmacological features of the series have been explored. The biological profile of one analogue, HTI-286, was studied here.
View Article and Find Full Text PDFThe antimitotic sponge tripeptide hemiasterlin (1) and a number of structural analogues have been synthesized and evaluated in cell-based assays for both cytotoxic and antimitotic activity in order to explore the SAR for this promising anticancer drug lead. One synthetic analogue, SPA110 (8), showed more potent in vitro cytotoxicty and antimitotic activity than the natural product hemiasterlin (1), and consequently it has been subjected to thorough preclinical evaluation and targeted for clinical evaluation. The details of the synthesis of hemiasterlin (1) and the analogues and a discussion of how their biological activities vary with their structures are presented in this paper.
View Article and Find Full Text PDF