Publications by authors named "James A Landro"

Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels. Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that serves as a pleotropic regulator of whole body energy homoeostasis. AMPK exists as a heterotrimeric complex, composed of a catalytic subunit (α) and two regulatory subunits (β and γ), each present as multiple isoforms. In the present study, we compared the enzyme kinetics and allosteric modulation of six recombinant AMPK isoforms, α1β1γ1, α1β2γ1, α1β2γ3, α2β1γ1, α2β2γ1 and α2β2γ3 using known activators, A769662 and AMP.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a principal metabolic regulator affecting growth and response to cellular stress. Comprised of catalytic and regulatory subunits, each present in multiple forms, AMPK is best described as a family of related enzymes. In recent years, AMPK has emerged as a desirable target for modulation of numerous diseases, yet clinical therapies remain elusive.

View Article and Find Full Text PDF

Glucokinase is a key regulator of glucose homeostasis, and small molecule allosteric activators of this enzyme represent a promising opportunity for the treatment of type 2 diabetes. Systemically acting glucokinase activators (liver and pancreas) have been reported to be efficacious but in many cases present hypoglycaemia risk due to activation of the enzyme at low glucose levels in the pancreas, leading to inappropriately excessive insulin secretion. It was therefore postulated that a liver selective activator may offer effective glycemic control with reduced hypoglycemia risk.

View Article and Find Full Text PDF

GK (glucokinase) is an enzyme central to glucose metabolism that displays positive co-operativity to substrate glucose. Small-molecule GKAs (GK activators) modulate GK catalytic activity and glucose affinity and are currently being pursued as a treatment for Type 2 diabetes. GK progress curves monitoring product formation are linear up to 1 mM glucose, but biphasic at 5 mM, with the transition from the lower initial velocity to the higher steady-state velocity being described by the rate constant kact.

View Article and Find Full Text PDF

Inhibition of acetyl-CoA carboxylases (ACCs), a crucial enzyme for fatty acid metabolism, has been shown to promote fatty acid oxidation and reduce body fat in animal models. Therefore, ACCs are attractive targets for structure-based inhibitor design, particularly the carboxyltransferase (CT) domain, which is the primary site for inhibitor interaction. We have cloned, expressed, and purified the CT domain of human ACC2 using baculovirus-mediated insect cell expression system.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine protein kinase that plays a central role in whole-body energy homeostasis. AMPK is a heterotrimeric enzyme with a catalytic (alpha) subunit and two regulatory (beta and gamma) subunits. The muscle-specific AMPK heterotrimeric complex (alpha2beta2gamma3) is involved in glucose and fat metabolism in skeletal muscle and therefore has emerged as an attractive target for drug development for diabetes and metabolic syndrome.

View Article and Find Full Text PDF

Mass spectrometry is an emerging format for label-free high-throughput screening. The main limitation of mass spectrometry is throughput, due to the requirement to purify samples prior to ionization. Here the authors compare an automated high-throughput mass spectrometry (HTMS) system (RapidFire) with the scintillation proximity assay (SPA).

View Article and Find Full Text PDF

A high-throughput mass spectrometry assay to measure the catalytic activity of phosphatidylserine decarboxylase (PISD) is described. PISD converts phosphatidylserine to phosphatidylethanolamine during lipid synthesis. Traditional methods of measuring PISD activity are low throughput and unsuitable for the high-throughput screening of large compound libraries.

View Article and Find Full Text PDF

An enhanced method to measure the concentration of individual naturally occurring free amino acids in solution is described. This relatively simple but robust method combines two previously reported procedures: the use of scintillation proximity assay (SPA) technology to measure aminoacyl-tRNA synthetase (aaRS) activity and the use of aaRS activity to measure amino acid concentration using the enzymatic isotope dilution technique. The format described is called an aaRS competitive scintillation proximity assay (cSPA).

View Article and Find Full Text PDF

A new method to measure the activity of lipid-metabolizing enzymes is described. Subsequent to an enzymatic reaction, a two-phase system (organic/aqueous) is established by the addition of a phase partition scintillation fluid (PPSF). The PPSF serves as a scintillation fluid, a phase partition agent, and a carrier/separator of an organic-soluble radiolabeled reaction substrate or product.

View Article and Find Full Text PDF

Tetrapeptide-based peptidomimetic compounds have been shown to effectively inhibit the hepatitis C virus NS3.4A protease without the need of a charged functionality. An aldehyde is used as a prototype reversible electrophilic warhead.

View Article and Find Full Text PDF