Background: Hemoglobin C differs from normal hemoglobin A by a glutamate-to-lysine substitution at position 6 of beta globin and is oxidatively unstable. Compared to homozygous AA erythrocytes, homozygous CC erythrocytes contain higher levels of membrane-associated hemichromes and more extensively clustered band 3 proteins. These findings suggest that CC erythrocytes have a different membrane matrix than AA erythrocytes.
View Article and Find Full Text PDFUsing a combination of atomic force, scanning and transmission electron microscopy, we found that avian erythrocytes infected with the avian malaria parasite Plasmodium gallinaceum develop approximately 60 nm wide and approximately 430 nm long furrow-like structures on the surface. Furrows begin to appear during the early trophozoite stage of the parasite's development. They remain constant in size and density during the course of parasite maturation and are uniformly distributed in random orientations over the erythrocyte surface.
View Article and Find Full Text PDFTuberculosis is an infectious and potentially fatal disease caused by the acid-fast bacillus Mycobacterium tuberculosis (MTB). One hallmark of a tuberculosis infection is the ability of the bacterium to subvert the normal macrophage defense mechanism of the host immune response. Lipoarabinomannan (LAM), an integral component of the MTB cell wall, is released when MTBs are taken into phagosomes and has been reported to be involved in the inhibition of phago-lysosomal (P-L) fusion.
View Article and Find Full Text PDFSporozoite invasion of mosquito salivary glands is critical for malaria transmission to vertebrate hosts. After release into the mosquito hemocoel, the means by which malaria sporozoites locate the salivary glands is unknown. We developed a Matrigel-based in vitro system to observe and analyze the motility of GFP-expressing Plasmodium berghei sporozoites in the presence of salivary gland products of Anopheles stephensi mosquitoes using temperature-controlled, low-light-level video microscopy.
View Article and Find Full Text PDFThere is a well-established clinical association between hemoglobin genotype and innate protection against Plasmodium falciparum malaria. In contrast to normal hemoglobin A, mutant hemoglobin C is associated with substantial reductions in the risk of severe malaria in both heterozygous AC and homozygous CC individuals. Irrespective of hemoglobin genotype, parasites may induce knob-like projections on the erythrocyte surface.
View Article and Find Full Text PDFMembrane domains contribute important structural and functional attributes to biological membranes. We describe the heterogeneous nanoscale distribution of lipid molecules within microscale membrane domains in multicomponent lipid bilayers composed of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and cholesterol (chol). The lipids were labeled with the fluorescent lipid analogues Bodipy-PC and DiI-C20:0 to identify the distribution of individual membrane components.
View Article and Find Full Text PDFThe molecular stability of hemoglobin is critical for normal erythrocyte functions, including oxygen transport. Hemoglobin C (HbC) is a mutant hemoglobin that has increased oxidative susceptibility due to an amino acid substitution (beta6: Glu to Lys). The growth of Plasmodium falciparum is abnormal in homozygous CC erythrocytes in vitro, and CC individuals show innate protection against severe P.
View Article and Find Full Text PDFScanning probe microscopy studies of membrane fusion and nanoscopic structures were performed using hydrated single lipids and lipid mixtures. Extruded vesicles of DMPC and mixtures at various concentrations of DLPC, DPPC and cholesterol were deposited on freshly cleaved mica and studied in a fluid environment by AFM. The nanostructures formed by these extruded liposomes ranged from isolated unilamellar vesicles to flat sheet membranes and were marked influenced by thermodynamic phase behavior.
View Article and Find Full Text PDFAlthough Entamoeba histolytica is capable of inducing an apoptotic response in vertebrate cells in vitro (Cell. Microbiol. 2 (2000) 617), it is not known whether vertebrate cell death requires direct amoeba-vertebrate cell contact or simply the presence of amoebae in the area of the vertebrate cells.
View Article and Find Full Text PDFIntrinsic heterogeneities, represented as domain formations in biological membranes, are important to both the structure and function of the membranes. We observed domain formations in mixed lipid bilayers of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and cholesterol (chol) in a fluid environment using an atomic force microscope (AFM). At room temperature, we demonstrated that both microscopic and nanoscopic domains coexist and the DPPC-rich domain is approximately 1.
View Article and Find Full Text PDFDetergent resistant membranes (DRMs) have been implicated in numerous cellular processes including signal transduction, membrane trafficking, and molecular sorting. Flotillins-1 and -2 have recently been shown to be large components of erythrocyte DRMs. In this study, we show that a Plasmodium falciparum infection disrupts the association of flotillins with erythrocyte DRMs.
View Article and Find Full Text PDFAtomic force microscopy (AFM), a relatively new variant of scanning probe microscopy developed for the material sciences, is becoming an increasingly important tool in other disciplines. In this review I describe in nontechnical terms some of the basic aspects of using AFM to study living vertebrate cells. Although AFM has some unusual attributes such as an ability to be used with living cells, AFM also has attributes that make its use in cell biology a real challenge.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
July 2002
Lipids are integral components of all biological membranes. Understanding the physical and chemical properties of these lipids is critical to our understanding of membrane functions. We developed a new atomic force microscope (AFM) approach to visualize in real time the temperature-induced lipid phase transition and domain separation processes in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes and estimate the thermodynamics of the phase transition process.
View Article and Find Full Text PDF