Rock-derived overburden material is used as a topsoil substitute for reclamation of Appalachian coal mines. We evaluated five mixtures ( = 4 each) of sandstone (SS) and siltstone (SiS) overburden as topsoil substitutes for 25+ years to quantify changes in mine soil properties. The study area was planted only to tall fescue [ (Schreb.
View Article and Find Full Text PDFThere is renewed interest in re-establishing trees on 0.6 million ha of mining-disturbed lands in the Appalachian mountains of Eastern United States. Many coal-mined lands reclaimed to meet requirements of US federal law have thick herbaceous vegetation and compacted soils which impede tree establishment.
View Article and Find Full Text PDFSurface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment.
View Article and Find Full Text PDFThe goal of many owners of reclaimed mined land in the Appalachian region is to restore the diverse native hardwood forest for environmental, economic, and cultural reasons. However, native hardwoods often grow poorly on mined sites because they are planted in unsuitable spoils devoid of native topsoil. In a greenhouse experiment, we examined the suitability of four growth media available for use on many mined sites in the central Appalachians-forest topsoil (FT), weathered sandstone (WS), unweathered sandstone (US), and unweathered shale (UH)-as well as the effects of topsoil amendment (none vs.
View Article and Find Full Text PDFWhile it is recognized that vegetation plays a significant role in stream bank stabilization, the effects are not fully quantified. The study goal was to determine the type and density of vegetation that provides the greatest protection against stream bank erosion by determining the density of roots in stream banks. To quantify the density of roots along alluvial stream banks, 25 field sites in the Appalachian Mountains were sampled.
View Article and Find Full Text PDF