Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, , along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates.
View Article and Find Full Text PDFAquaporin-4 (AQP4) is a water channel protein found primarily in the central nervous system (CNS) that helps to regulate water-ion homeostasis. AQP4 exists in two major isoforms: M1 and M23. While both isoforms have a homotetrameric quaternary structure and are functionally identical when transporting water, the M23 isoform forms large protein aggregates known as orthogonal arrays of particles (OAPs).
View Article and Find Full Text PDFThe family of group XIV rhodamine zwitterions are fluorescence probes with carbon, silicon, germanium, or tin substituted in the 10-position of the xanthene ring. Because of their inherent near-infrared fluorescence, photostability and high quantum yields in aqueous solutions, the Si and Ge containing fluorophores in this class have become increasingly important for fluorescent labeling of proteins and biological molecules. This study fully characterizes photophysical rates derived from a model consisting of a singlet ground state, the lowest singlet excited state, and the lowest triplet excited state for two exemplar group XIV rhodamine zwitterions, one containing Si and the other Ge.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) fall generally into two broad categories: those that are covalently bound either to the surface or to each other and those that rely on weaker forces such as hydrogen bonding or van der Waals forces. The engineering of the structure of SAMs formed from weaker forces is an exciting and complex field that often utilizes long alkane substituents bound to core moieties. The core provides the unique optical, electronic, or catalytic property desired, while the interdigitation of the alkane chains provides the means for creating well-regulated patterns of cores on the substrate.
View Article and Find Full Text PDFThe purpose of this chapter is to serve as a guide for those who wish to carry out experiments tracking single proteins in planar supported biomimetic membranes. This chapter describes, in detail, the construction of a simple single molecule microscope, which includes: (1) a parts list, (2) temperature control, (3) an alignment procedure, (4) a calibration procedure, and (5) a procedure for measuring the mechanical stability of the instrument. It also gives procedures for making planar supported bilayers on hydrophilically treated borosilicate and quartz.
View Article and Find Full Text PDFIn the use of solution-based 3D nanoarchitectures for optics, drug delivery, and cancer treatment, the precise nanoparticle architecture morphologies, architecture sizes, interparticle distances, and the assembly stability are all critical to their functionality. 3D nanoparticle architectures in solution are difficult to characterize, as few techniques can provide individualized information on interparticle spacing (defined by linkage molecule), nanoparticle assembly size, morphology, and identification of false aggregation. Bulk characterization techniques, including small angle x-ray scattering, can provide architecture sizes, though they are unable to precisely measure differences within interparticle spacings for individual architectures and can falsely measure assemblies caused by non-linkage grouped nanoparticles.
View Article and Find Full Text PDFCytochrome P450-reductase (CPR) is a versatile NADPH-dependent electron donor located in the cytoplasmic side of the endoplasmic reticulum. It is an electron transferase that is able to deliver electrons to a variety of membrane-bound oxidative partners, including the drug-metabolizing enzymes of the cytochrome P450s (P450). CPR is also stoichiometrically limited compared to its oxidative counterparts, and hypotheses have arisen about possible models that can overcome the stoichiometric imbalance, including quaternary organization of P450 and diffusion-limited models.
View Article and Find Full Text PDFCytochrome P450 reductase (CPR) is the redox partner for most human cytochrome P450 enzymes. It is also believed that CPR is an integral membrane protein exclusively. Herein, we report that, contrary to this belief, CPR can exist as a peripheral membrane protein in the absence of NADPH and will transition to an integral membrane protein in the presence of stoichiometric amounts of NADPH or greater.
View Article and Find Full Text PDFMetalloporphyrin containing proteins, such as cytochrome P450, play a key role in biological systems. The spectroscopic properties of metalloporphyrins have been a subject of intense interest and intense debate for over 50 years. Iron-porphyrins are usually believed to be nonfluorescent.
View Article and Find Full Text PDFThis symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5.
View Article and Find Full Text PDFThere are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g.
View Article and Find Full Text PDFThe advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics.
View Article and Find Full Text PDFPlanar solid supported lipid membranes that include an intervening bovine serum albumen (BSA) cushion can greatly reduce undesirable interactions between reconstituted membrane proteins and the underlying substrate. These hetero-self-assemblies reduce frictional coupling by shielding reconstituted membrane proteins from the strong surface charge of the underlying substrate, thereby preventing them from strongly sticking to the substrate themselves. The motivation for this work is to describe the conditions necessary for liposome adsorption and bilayer formation on these hetero-self-assemblies.
View Article and Find Full Text PDFMethods Mol Biol
August 2013
The purpose of this chapter is to serve as a guide for those who wish to carry out experiments tracking single transmembrane proteins in planar supported membrane biomimetics. This chapter describes, in detail, the construction of a simple single-molecule microscope, which includes (1) a parts list, (2) an alignment procedure, (3) a calibration procedure, and (4) a procedure for measuring the mechanical stability of the instrument. It also gives procedures for making planar supported POPC bilayers on hydrophilically treated borosilicate and quartz, POPC/PEG-PE cushioned bilayers on hydrophilically treated surfaces, and POPC/PEG-PE cushioned bilayers on BSA passivated substrates.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2013
Described is the synthesis of 5-hydroxytryptamine-tetramethylrhodamine (5HT*); an indole nitrogen linked fluorescent conjugate of serotonin. Through a series fluorescence quenching experiments and experiments in the presence of a known competitive antagonist (Granisetron), it was shown that 5HT* specifically binds to purified homo-pentameric type-3 human serotonin receptors (5HT(3A)). The measured dissociation constant and Hill coefficient are K(d) = 83 ± 3 nM and n = 3.
View Article and Find Full Text PDFJ Phys Chem B
December 2012
A coarse-grained model for DNA that is intended to function realistically at the level of individual bases is reported. The model is composed of residues with up to eight coarse-grained beads each, which is sufficient for DNA-like base stacking and base-base recognition by hydrogen bonding. The beads interact by means of short-ranged pair potentials and a simple implicit solvent model.
View Article and Find Full Text PDFA predominate question associated with supported bilayer assemblies containing proteins is whether or not the proteins remain active after incorporation. The major cause for concern is that strong interactions with solid supports can render the protein inactive. To address this question, a large transmembrane protein, the serotonin receptor, 5HT(3A), has been incorporated into several supported membrane bilayer assemblies of increasing complexity.
View Article and Find Full Text PDFSupported lipid bilayer membranes play a vital role in a number of applications from biosensors to fundamental studies of membrane proteins. It is widely understood that the underlying solid support in such assemblies causes large perturbations to the lipid bilayer as compared with black lipid membranes, but the exact nature of these effects on the membrane by the solid support is less understood. Here, all-atom molecular dynamics simulations of DLPC, DMPC, POPC, and DEPC on a hydroxylated nanocrystalline alpha-quartz (011) slab have revealed a pronounced thinning effect.
View Article and Find Full Text PDFThe introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated.
View Article and Find Full Text PDFDNA polymerases are protein machines that processively incorporate complimentary nucleotides into a growing double-stranded DNA (ds-DNA). Single-base nucleotide incorporation rates have been determined by stalling and restarting various polymerases, but intrinsic processive rates have been difficult to obtain, particularly for polymerases with low processivity, such as the human immunodeficiency virus type 1 reverse transcriptase (HIV RT) polymerase. Here we find, using a new fluorescence-based single-molecule polymerization assay, that the intrinsic processive DNA-dependent polymerization of HIV RT is approximately Poissionian (i.
View Article and Find Full Text PDFDNA polymerases are complex machines with both chemical and mechanical functions. Recent crystal structures, ensemble kinetics, and single-molecule investigations have helped to elucidate the main properties of several DNA polymerases, all of which share common structural elements and a common basic mechanism, despite wide variations in amino acid sequence. The framework model is intended to aid in the understanding of these common features (and differences).
View Article and Find Full Text PDFUsing the force sensor of an atomic force microscope, motor forces of the human immunodeficiency virus-1 reverse transcriptase were measured during active replication of a short DNA transcript. At low load forces the polymerase is mechanically slowed, whereas at high force (approximately 15 piconewton) it stalls. From recordings of estimated polymerase turnover velocity versus load force, an approximate force-velocity curve has been constructed.
View Article and Find Full Text PDFThis study addresses, in detail, the orbital nature and the extent of metal-metal communication in the lowest emitting triplet state of Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) (where 4,4'-bpy = 4,4'-bipyridine) as well as the symmetry of the lowest (3)MLCT manifold in comparison to that of the ground state. All spectral evidence points to (1). a (3)MLCT excited manifold localized between a single Re(I) corner and an adjacent bridging ligand, (2).
View Article and Find Full Text PDFThe bent d(0) titanium metallocene (Cp)(2)Ti(NCS)(2) exhibits an intense phosphorescence from a ligand-to-metal charge transfer triplet excited state at 77 K in an organic glass substrate and a poly(methyl methacrylate) plastic substrate. Quantum chemical calculations and spectroscopic studies show that the orbital parentage of this triplet state arises from the promotion of an electron from an essentially nonbonding symmetry adapted pi molecular orbital located on the NCS(-) ligands to a d(z)2-(y)2 orbital located on the Ti metal. Standard infrared spectroscopy of (Cp)(2)Ti(NCS)(2) in its ground electronic state at 77 K reveals a pair of closely spaced absorptions at (2072 cm(-1), 2038 cm(-1))(glass) and (2055 cm(-1), 2015 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretching modes of the two coordinated NCS(-) ligands.
View Article and Find Full Text PDF