The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI) methodology, a lean approach to management at Seattle Children's (Hospital, Research Institute, Foundation), would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart's Plan-Do-Check-Act process improvement cycle.
View Article and Find Full Text PDFThe purpose of this study was to illustrate the application of A3 Problem Solving Reports of the Toyota Production System to our research vivarium through the methodology of Continuous Performance Improvement, a lean approach to healthcare management at Seattle Children's (Hospital, Research Institute, Foundation). The Report format is described within the perspective of a 10-step scientific method designed to realize measurable improvements of Issues identified by the Report's Author, Sponsor and Coach. The 10-step method (Issue, Background, Current Condition, Goal, Root Cause, Target Condition, Countermeasures, Implementation Plan, Test, and Follow-up) was shown to align with Shewhart's Plan-Do-Check-Act process improvement cycle in a manner that allowed for quantitative analysis of the Countermeasure's outcomes and of Testing results.
View Article and Find Full Text PDFA peroxisome proliferator-actived receptor (PPAR) response element (RE) in the promoter region of the adaptor-related protein complex 2, alpha 2 subunit (AP2α2) of mouse heart has been identified. The steroid hormone nuclear PPARs and the retinoid X receptors (RXRs) are important transcriptional factors that regulate gene expression, cell differentiation and lipid metabolism. They form homo- (RXR) and hetero- (PPAR-RXR) dimers that bind DNA at various REs.
View Article and Find Full Text PDFVitronectin (VN), secreted into the bloodstream by liver hepatocytes, is known to anchor epithelial cells to basement membranes through interactions with cell surface integrin receptors. We report here that VN is also synthesized by urothelial cells of urothelium in vivo and in vitro. In situ hybridization, dideoxy sequencing, immunohistochemistry, and ELISA of urothelial cell mRNA, cDNA, tissue, and protein extracts demonstrated that the VN gene is active in vivo and in vitro.
View Article and Find Full Text PDFObjectives: To develop bladder cancer-specific ligands using a combinatorial chemistry approach.
Materials And Methods: We performed a high-throughput one-bead one-compound combinatorial chemistry approach to identify ligands that bound to bladder transitional cell carcinoma cells. The whole-cell binding assay allowed successful identification of a few peptides that bound selectively to bladder cancer cells.
Am J Physiol Renal Physiol
November 2010
von Brunn's nests have long been recognized as precursors of benign lesions of the urinary bladder mucosa. We report here that von Brunn's nests are especially prevalent in the exstrophic bladder, a birth defect that predisposes the patient to formation of bladder cancer. Cells of von Brunn's nest were found to coalesce into a stratified, polarized epithelium which surrounds itself with a capsule-like structure rich in types I, III, and IV collagen.
View Article and Find Full Text PDFSynthetic urothelium is an important goal for the tissue-engineering field that would have great utility for treating diseases and congenital defects affecting the urinary tract. A key step in the development of synthetic tissue is optimizing the conditions for coating biomaterials with cells of interest. Initial cell attachment is an important consideration when designing tissue-engineering scaffolds.
View Article and Find Full Text PDFDiseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual health, incontinence, infection, and kidney failure. The growth, differentiation, and repair of the bladder's epithelial lining are regulated, in part, by fibroblast growth factor (FGF)-7 and -10 via a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -10 within the transitional epithelium (urothelium). The FGF-7 gene is located at the 15q15-q21.
View Article and Find Full Text PDFSPARC (secreted protein acidic and rich in cysteine), although primarily known as a secreted, matricellular protein, has also been identified in urothelial cell nuclei. Many biological activities, including inhibition of cell adhesion and repression of DNA synthesis, have been ascribed to SPARC, but the influence of its intracellular localization on each of these activities is unknown. When exposed by epitope retrieval and nuclear matrix unmasking techniques, endogenous SPARC was found to localize strongly to the nuclei and the nuclear matrix of cultured urothelial cells.
View Article and Find Full Text PDFFibroblast growth factor-10 (FGF-10), a mitogen for the epithelial cells lining the lower urinary tract, has been identified inside urothelial cells, despite its acknowledged role as an extracellular signaling ligand. Recombinant (r)FGF-10 was determined by fluorescence microscopy optical sectioning to localize strongly to nuclei inside cultured urothelial cells. To clarify the possible role of a nuclear localization signal (NLS) in this translocation, a variant of rFGF-10 was constructed which lacked this sequence.
View Article and Find Full Text PDFControl of the regenerative properties of urothelial tissue would greatly aid the clinician in the management of urinary tract disease and disorders. Fibroblast growth factor 10 (FGF-10) is a mitogen which is particularly promising as a protein therapy for urothelial injury. The spatial synthesis, transport, targeting, and mechanistic pathway of FGF-10 and its receptor were studied in a human urothelial cell culture model and in fixed sections of lower urinary tract tissue.
View Article and Find Full Text PDFThe anti-spreading activity of secreted protein acidic and rich in cysteine (SPARC) has been assigned to the C-terminal third domain, a region rich in alpha-helices. This "extracellular calcium-binding" (EC) domain contains two EF-hands that each coordinates one Ca2+ ion, forming a helix-loop-helix structure that not only drives the conformation of the protein but is also necessary for biological activity. Recombinant (r) EC, expressed in E.
View Article and Find Full Text PDFThe AON epitope of secreted protein acidic and rich in cysteine (SPARC) is a conserved motif expressed by human SPARC in a variety of human cell types. Through the use of a monoclonal antibody that recognizes this epitope, transitional epithelium was found to restrict expression of SPARC to the suprabasal and intermediate layer. Such intracellular expression was defined by immunoreactive signals that localized to the apical plasma membranes of suprabasal and intermediate cells.
View Article and Find Full Text PDFFibroblast growth factor-7 (FGF-7, keratinocyte growth factor, KGF) is a 163 amino acid glycoprotein synthesized and secreted by mesenchymal cells (e.g. fibroblasts/fibrocytes) in epithelial organs, thereby functioning as a paracrine mediator of epithelial cell proliferation.
View Article and Find Full Text PDFSPARC, a matricellular protein that affects cellular adhesion and proliferation, is produced in remodeling tissue and in pathologies involving fibrosis and angiogenesis. In this study we have asked whether peptides generated from cleavage of SPARC in the extracellular milieu can regulate angiogenesis. Matrix metalloproteinase (MMP)-3, but not MMP-1 or 9, showed significant activity toward SPARC.
View Article and Find Full Text PDFBackground: The matricellular protein SPARC (secreted protein acidic and rich in cysteine) is expressed during development, tissue remodeling and repair. It functions as an endogenous inhibitor of cell proliferation, regulates angiogenesis, regulates cell adhesion to extracellular matrix, binds cytokines such as platelet derived growth factor and stimulates transforming growth factor-beta (TGF-beta) production. This study describes the expression of SPARC during human renal development, in normal kidneys and during renal allograft rejection.
View Article and Find Full Text PDFFibroblast growth factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5.
View Article and Find Full Text PDF