Background: A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated.
View Article and Find Full Text PDFFibrillarin (Fbl) is a highly conserved protein that plays an essential role in ribosome biogenesis and more particularly in the methylation of ribosomal RNAs and rDNA histones. In cellular models, FBL was shown to play an important role in tumorigenesis and stem cell differentiation. We used the zebrafish as an in vivo model to study Fbl function during embryonic development.
View Article and Find Full Text PDFCurr Opin Genet Dev
October 2015
Although considered a 'house-keeping' function, ribosome biogenesis is regulated differently between cells and can be modulated in a cell-type-specific manner. These differences are required to generate specialized ribosomes that contribute to the translational control of gene expression by selecting mRNA subsets to be translated. Thus, differences in ribosome biogenesis between stem and differentiated cells indirectly contribute to determine cell identity.
View Article and Find Full Text PDFInvestigating neural stem cell (NSC) behaviour in vivo, which is a major area of research, requires NSC models to be developed. We carried out a multilevel characterisation of the zebrafish embryo peripheral midbrain layer (PML) and identified a unique vertebrate progenitor population. Located dorsally in the transparent embryo midbrain, these large slow-amplifying progenitors (SAPs) are accessible for long-term in vivo imaging.
View Article and Find Full Text PDFThe highly conserved POU genes encode homeodomain transcription factors involved in various developmental events, with some, the Brn genes, playing key roles in neurogenesis. We investigated the evolutionary relationships between these genes, by studying the POU gene complement of a model teleost, the medaka (Oryzias latipes). We identified 17 POU genes and carried out a comprehensive in situ hybridization analysis focusing on the optic tectum, a cortical structure of the mesencephalon, in which cell positions and their differentiation states are spatially and temporally correlated.
View Article and Find Full Text PDFThe adult mammalian brain and spinal cord contain glial precursors that express platelet-derived growth factor receptor α subunit (PDGFRA) and the NG2 proteoglycan. These "NG2 cells" descend from oligodendrocyte precursors in the perinatal CNS and continue to generate myelinating oligodendrocytes in the gray and white matter of the postnatal brain. It has been proposed that NG2 cells can also generate reactive astrocytes at sites of CNS injury or demyelination.
View Article and Find Full Text PDFAfter central nervous system (CNS) demyelination-such as occurs during multiple sclerosis-there is often spontaneous regeneration of myelin sheaths, mainly by oligodendrocytes but also by Schwann cells. The origins of the remyelinating cells have not previously been established. We have used Cre-lox fate mapping in transgenic mice to show that PDGFRA/NG2-expressing glia, a distributed population of stem/progenitor cells in the adult CNS, produce the remyelinating oligodendrocytes and almost all of the Schwann cells in chemically induced demyelinated lesions.
View Article and Find Full Text PDFFew adult neural stem cells have been characterized in vertebrates. Although teleosts continually generate new neurons in many regions of the brain after embryogenesis, only two types of neural stem cells (NSCs) have been reported in zebrafish: glial cells in the forebrain resembling mammalian NSCs, and neuroepithelial cells in the cerebellum. Here, following our previous studies on dividing progenitors (Nguyen et al.
View Article and Find Full Text PDFOligodendrocyte precursors (OLPs or 'NG2 cells') are abundant in the adult mouse brain, where they continue to proliferate and generate new myelinating oligodendrocytes. By cumulative BrdU labelling, we estimated the cell cycle time TC and the proportion of NG2 cells that is actively cycling (the growth fraction) at approximately postnatal day 6 (P6), P60, P240 and P540. In the corpus callosum, TC increased from <2 days at P6 to approximately 9 days at P60 to approximately 70 days at P240 and P540.
View Article and Find Full Text PDFPlatelet-derived growth factor alpha receptor (PDGFRA)/NG2-expressing glia are distributed throughout the adult CNS. They are descended from oligodendrocyte precursors (OLPs) in the perinatal CNS, but it is not clear whether they continue to generate myelinating oligodendrocytes or other differentiated cells during normal adult life. We followed the fates of adult OLPs in Pdgfra-creER(T2)/Rosa26-YFP double-transgenic mice and found that they generated many myelinating oligodendrocytes during adulthood; >20% of all oligodendrocytes in the adult mouse corpus callosum were generated after 7 weeks of age, raising questions about the function of the late-myelinating axons.
View Article and Find Full Text PDFThrough whole-mount in situ hybridisation screen on medaka (Oryzias latipes) brain, Ol-insm1b, a member of the Insm1/Mlt1 subfamily of SNAG-domain containing genes, has been isolated. It is strongly expressed during neurogenesis and pancreas organogenesis, with a pattern that suggests a role in cell cycle exit. Here, we describe Ol-insm1b expression pattern throughout development and in adult brain, and we report on its functional characterisation.
View Article and Find Full Text PDFSonic hedgehog (SHH) and fibroblast growth factor 2 (FGF2) can both induce neocortical precursors to express the transcription factor OLIG2 and generate oligodendrocyte progenitors (OLPs) in culture. The activity of FGF2 is unaffected by cyclopamine, which blocks Hedgehog signalling, demonstrating that the FGF pathway to OLP production is Hedgehog independent. Unexpectedly, SHH-mediated OLP induction is blocked by PD173074, a selective inhibitor of FGF receptor (FGFR) tyrosine kinase.
View Article and Find Full Text PDFThe role of pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor (PAC1 receptor) in regulating hypothalamic supraoptic neurones was investigated using PAC1 receptor-deficient male mice (PAC1-/-). The effects of PACAP on [Ca2+]i were investigated in freshly dissociated supraoptic neurones and on the somatodendritic release of vasopressin and oxytocin, examined on intact supraoptic nuclei. In supraoptic neurones from wild-type mice (PAC1+/+), 100 nm PACAP induced an increase in [Ca2+]i and release of vasopressin and oxytocin, whereas in heterozygous (PAC1+/-) and null-mutant mice (PAC1-/-), PACAP was much less effective.
View Article and Find Full Text PDFThe pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1) has been involved in the survival and differentiation of neuroblasts during development. This study examined the effects of various neurotrophins on the activity of the mouse PAC1 promoter/luciferase reporter constructs in rat PC12 cells and in 8-day-old mouse cerebellar granule cells. In PC12 cells, both differentiating factors such as nerve growth factor (NGF) and mitogens such as epidermal growth factor (EGF) and insulin growth factor-1 (IGF-1) up-regulated PAC1 promoter activity by 2-4-fold in a concentration-dependent manner.
View Article and Find Full Text PDFRegulations of the PACAP type 1 (PAC1) receptor expression have been described in the brain and the anterior pituitary. To understand the molecular mechanisms underlying mouse PAC1 gene regulation, we first mapped its transcription start sites (tss). PAC1 receptor RNA initiates from two major sites in embryos and adult tissues.
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) is a potentiator of glucose-induced insulin secretion. PACAP binds to a PACAP-specific receptor (PAC1) and to VPAC receptors (VPAC1 and VPAC2), which share high affinity for vasoactive intestinal polypeptide (VIP). In the present study, the molecular expression of PACAP receptor isoforms and the signaling pathways involved in the insulin secretory effect of PACAP were investigated in isolated rat and mouse pancreatic islets.
View Article and Find Full Text PDFThe circadian clock located in the suprachiasmatic nucleus (SCN) organizes autonomic and behavioral rhythms into a near 24 hr time that is adjusted daily to the solar cycle via a direct projection from the retina, the retinohypothalamic tract (RHT). This neuronal pathway costores the neurotransmitters PACAP and glutamate, which seem to be important for light-induced resetting of the clock. At the molecular level the clock genes mPer1 and mPer2 are believed to be target for the light signaling to the clock.
View Article and Find Full Text PDFWe report here that PAC1 KO females display decreased fertility, whereas male fertility was normal. ICC on pituitary section showed that FSH, LH, and prolactin synthesis were not affected in KO mice. Moreover, the pituitary-gonadal axis responded properly to an acute fasting test in KO mice.
View Article and Find Full Text PDFWe report that: (1) An increase in the transcription activity is a mechanism by which trophic peptides may regulate the expression of PAC1. (2) An activation of the PAC1 promoter does not necessarily correlate with the neurotrophin-promoted neuritogenesis. (3) Activation of the PAC1 promoter is probably an early event since the EGF response is rather weak and transient in PC12 cells.
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) is a ubiquitous neuropeptide of the vasoactive intestinal peptide (VIP) family that potentiates glucose-stimulated insulin secretion. Pancreatic beta cells express two PACAP receptor subtypes, a PACAP-preferring (PAC1) and a VIP-shared (VPAC2) receptor. We have applied a gene targeting approach to create a mouse lacking the PAC1 receptor (PAC1(-/-)).
View Article and Find Full Text PDF