Cerium oxide nanoparticles (CONPs) have a unique surface redox chemistry that appears to selectively protect normal tissues from radiation induced damage. Our prior research exploring the biocompatibility of polymer-coated CONPs found further study of poly-acrylic acid (PAA)-coated CONPs was warranted due to improved systemic biodistribution and rapid renal clearance. This work further explores PAA-CONPs' radioprotective efficacy and mechanism of action related to tumor microenvironment pH.
View Article and Find Full Text PDFColitis-associated colon cancer (CAC) accompanies the massive infiltration of neutrophils during tumorigenesis and progression of CAC. Depletion of neutrophils in circulation results in significant inhibition of tumor incidence in CAC. However, the underlying mechanisms are largely unclear.
View Article and Find Full Text PDFBone Marrow Transplant
March 2019
Chimeric antigen receptor T cells (CAR T cells) are dosed similarly to donor lymphocyte infusions following hematopoietic cell transplantation. However, the mechanism driving proliferation in CAR T cells is distinct from conventional T cells. As such there are quantitative differences in the antigen response of these engineered cells when compared with conventional T cells.
View Article and Find Full Text PDFProstate cancer is one of the leading causes of cancer deaths, with no curative treatments once it spreads. Alternative therapies, including immunotherapy, have shown limited efficacy. Dendritic cells (DC) have been widely used in the treatment of various malignancies.
View Article and Find Full Text PDFCerium oxide nanoparticles (CONPs) have unique surface chemistry allowing catalyst-like antioxidant properties, and are being investigated for several disease indications in medicine. Studies have utilized surface modified CONPs toward this application, but have been lacking in comprehensive biodistribution and pharmacokinetic data and a direct comparison to uncoated CONPs. We developed an enhanced single-pot synthesis of several coated CONPs and an efficient intrinsic core labeling of CONPs with the clinical PET isotope, zirconium-89, allowing detailed PET imaging and ex vivo biodistribution.
View Article and Find Full Text PDFPreviously, we demonstrated that nitric oxide (NO) synthase (NOS) is uncoupled in a wide range of solid tumors and that restoring NOS coupling with the tetrahydrobiopterin precursor sepiapterin (SP) inhibits tumor progression. Endothelial dysfunction characterizes the poorly functional vasculature of solid tumors, and since NO is critical for regulation of endothelial function we asked whether SP, by recoupling NOS, improves tumor vasculature structure and function-enhancing chemotherapeutic delivery and response to radiotherapy. MMTV-neu mice with spontaneous breast tumors were treated with SP by oral gavage and evaluated by multispectral optoacoustic tomographic analysis of tumor HbO and by tissue staining for markers of hypoxia, blood perfusion, and markers of endothelial and smooth muscle proteins.
View Article and Find Full Text PDFIncreasing evidence indicates that reduced intracellular drug accumulation is the parameter most consistently associated with platinum drug resistance, emphasizing the need to directly measure the intratumor drug concentration. In the era of precision medicine and with the advent of powerful imaging and proteomics technologies, there is an opportunity to better understand drug resistance by exploiting these techniques to provide new knowledge on drug-target interactions. Here, we contribute to this endeavor by reporting on the development of an F-labeled carboplatin derivative (F-FCP) that has the potential to image drug uptake and retention, including intratumoral distribution, by PET.
View Article and Find Full Text PDFRadiolabeled liposomes have been employed as diagnostic tools to monitor in vivo distribution of liposomes in real-time, which helps in optimizing the therapeutic efficacy of the liposomal drug delivery. This work utilizes the platform of [In]-Liposome as a drug delivery vehicle, encapsulating a novel F-labeled carboplatin drug derivative ([F]-FCP) as a dual-molecular imaging tool as both a radiolabeled drug and radiolabeled carrier. The approach has the potential for clinical translation in individual patients using a dual modal approach of clinically-relevant radionuclides of F positron emission tomography (PET) and In single photon emission computed tomography (SPECT).
View Article and Find Full Text PDFRare earth oxide (REO) materials are found naturally in earth's crust and at the nanoscale these REO nanoparticles exhibit unique thermal, electrical, and physicochemical properties. REO nanoparticles are widely used in different industrial sectors for ceramics, glass polishing, metallurgy, lasers, and magnets. Recently, some of these REO nanoparticles have been identified for their potential application in medicine, including therapy, imaging, and diagnostics.
View Article and Find Full Text PDFAlginate microbeads incorporating adipose-derived stem cells (ASCs) have potential for delivering viable cells capable of facilitating tissue regeneration. These microbeads are formed in calcium crosslinking solutions containing organic osmolytes to ensure physiological osmolality, but the comparative effects of these osmolytes on the microencapsulated cells are not known. In addition, delivery parameters needed to use microencapsulated cells for tissue regeneration remain unknown.
View Article and Find Full Text PDFAstrocyte elevated gene-1 (AEG-1), also known as MTDH (metadherin) or LYRIC, is an established oncogene. However, the physiological function of AEG-1 is not known. To address this question, we generated an AEG-1 knock-out mouse (AEG-1KO) and characterized it.
View Article and Find Full Text PDFHeight is the result of many growth and development processes. Most of the genes associated with height are known to play a role in skeletal development. Single-nucleotide polymorphisms in the SPAG17 gene have been associated with human height.
View Article and Find Full Text PDFUnlabelled: Here, evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast with normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on high-performance liquid chromatography analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin:dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid, and head and neck tumors compared with normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling, including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression, and TCF4 promoter activity, and reduced NF-κB promoter activity.
View Article and Find Full Text PDFThe overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell) sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbocyanine Iodide (DiR), a lipophilic near infrared fluorescent dye that labels the cell membrane.
View Article and Find Full Text PDFAm J Nucl Med Mol Imaging
September 2014
Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [(59)Fe]-superparamagnetic iron oxide nanoparticles ([(59)Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. (59)Fe was incorporated into Fe3O4 nanoparticle crystal lattice with 92±3% efficiency in thermal decomposition synthesis. Multidentate poly(acrylic acid)-dopamine-poly(ethylene-glycol-2000) (PAA-DOP-PEG) ligands were designed and synthesized based on facile EDC chemistry and utilized to functionalize the [(59)Fe]-SPIONs.
View Article and Find Full Text PDFHere we describe a novel strategy to incorporate indium-111 into near infrared (NIR) emitting Cu-In-Se quantum dots (CIS-QDs) to synthesize intrinsically radiolabeled QDs (rQDs), as a quantitative tool for in vivo SPECT/fluorescence imaging. Multidentate zwitterionic polymer ligands were used to functionalize and improve the stability of CIS-rQDs and reduce nonspecific binding with plasma proteins/cell membrane. CIS-rQDs were taken up by colorectal adenocarcinoma (COLO-205) and human epidermoid carcinoma (KB-3-1) cells at low uptake rate (∼0.
View Article and Find Full Text PDFPurpose: In radiotherapy, PET images can be used to guide the delivery of selectively escalated doses to biologically relevant tumour subvolumes. Validation of PET for such applications requires demonstration of spatial coincidence between PET tracer uptake pattern and the histopathologically confirmed target. This study introduces a novel approach to histopathological validation of PET image segmentation for radiotherapy guidance.
View Article and Find Full Text PDFMicrofluidics technology has emerged as a powerful tool for the radiosynthesis of positron emission tomography (PET) and single-photon emission computed tomography radiolabeled compounds. In this work, we have exploited a continuous flow microfluidic system (Advion, Inc., USA) for the [(18) F]-fluorine radiolabeling of the malonic acid derivative, [(18) F] 2-(5-fluoro-pentyl)-2-methyl malonic acid ([(18) F]-FPMA), also known as [(18) F]-ML-10, a radiotracer proposed as a potential apoptosis PET imaging agent.
View Article and Find Full Text PDFSurface functionalization of nanoparticles is an important determinant of their interactions with biological compartments at the nano-bio interface. In this paper, a series of multidentate zwitterionic polymeric ligands were synthesized and used to functionalize the surface of quantum dots (QDs). The structure of polymer ligands was designed by changing the molar ratio of reactants and precursors used in the reaction.
View Article and Find Full Text PDFCerium oxide nanoparticles (CONPs) have demonstrated protection properties against oxidation in various cells and tissues. The mechanism of this, however, is poorly understood. Monitoring the interaction of CONPs with biological compartments 'in situ' is crucial to understand their biochemical and physiological properties in vivo.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD), resulting from defects in cilia assembly or motility, is caused by mutations in a number of genes encoding axonemal proteins. PCD phenotypes are variable, and include recurrent respiratory tract infections, bronchiectasis, hydrocephaly, situs inversus, and male infertility. We generated knockout mice for the sperm-associated antigen-17 (Spag17) gene, which encodes a central pair (CP) protein present in the axonemes of cells with "9 + 2" motile cilia or flagella.
View Article and Find Full Text PDFA novel approach was developed to synthesize radioactive quantum dots (r-QDs) thereby enabling both optical and radionuclide signals to be detected from the same intrinsic bimodal probe. This proof-of-concept is exemplified by the incorporation of the radionuclide (109)Cadmium into the core/shell of the nanoparticle. Green and near infrared (NIR) emission intrinsic r-QDs were synthesized and characterized.
View Article and Find Full Text PDFBackground And Purpose: PET imaging with (18)F-fluorothymidine ((18)F-FLT) can potentially be used to identify tumour subvolumes for selective dose escalation in radiation therapy. The purpose of this study is to analyse the co-localization of intratumoural patterns of cell proliferation with (18)F-FLT tracer uptake.
Materials And Methods: Mice bearing FaDu or SQ20B xenograft tumours were injected with (18)F-FLT, and bromodeoxyuridine (proliferation marker).
Unlabelled: Histopathologic validation of a PET tracer requires assessment of colocalization of the tracer with its intended biologic target. Using thin tissue section autoradiography, it is possible to visualize the spatial distribution of the PET tracer uptake and compare it with the distribution of the intended biologic target (as visualized with immunohistochemistry). The purpose of this study was to develop and evaluate an objective methodology for deformable coregistration of autoradiography and microscopy images acquired from a set of sequential tissue sections.
View Article and Find Full Text PDF