The ability of most patients with selective immunoglobulin A (IgA) deficiency (SIgAD) to remain apparently healthy has been a persistent clinical conundrum. Compensatory mechanisms, including IgM, have been proposed, yet it remains unclear how secretory IgA and IgM work together in the mucosal system and, on a larger scale, whether the systemic and mucosal anti-commensal responses are redundant or have unique features. To address this gap in knowledge, we developed an integrated host-commensal approach combining microbial flow cytometry and metagenomic sequencing (mFLOW-Seq) to comprehensively define which microbes induce mucosal and systemic antibodies.
View Article and Find Full Text PDFDisruptions to the intestinal microbiome during weaning lead to negative effects on host immune function. However, the critical host-microbe interactions during weaning that are required for immune system development remain poorly understood. We find that restricting microbiome maturation during weaning stunts immune system development and increases susceptibility to enteric infection.
View Article and Find Full Text PDFEnteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile.
View Article and Find Full Text PDFJ Pediatric Infect Dis Soc
December 2021
The mitochondrial free radical theory of aging suggests that accumulating oxidative damage to mitochondria and mitochondrial DNA (mtDNA) plays a central role in aging. Circulating cell-free mtDNA (ccf-mtDNA) isolated from blood may be a biomarker of disease. Extracellular vesicles (EVs) are small (30-400 nm), lipid-bound vesicles capable of shuttling proteins, nucleic acids, and lipids as part of intercellular communication systems.
View Article and Find Full Text PDFType 2 diabetes is a chronic age-associated degenerative metabolic disease that reflects relative insulin deficiency and resistance. Extracellular vesicles (EVs) (exosomes, microvesicles, and apoptotic bodies) are small (30-400 nm) lipid-bound vesicles capable of shuttling functional proteins, nucleic acids, and lipids as part of intercellular communication systems. Recent studies in mouse models and in cell culture suggest that EVs may modulate insulin signaling.
View Article and Find Full Text PDFCells release lipid-bound extracellular vesicles (EVs; exosomes, microvesicles and apoptotic bodies) containing proteins, lipids and RNAs into the circulation. Vesicles mediate intercellular communication between both neighboring and distant cells. There is substantial interest in using EVs as biomarkers for age-related diseases including cancer, and neurodegenerative, metabolic and cardiovascular diseases.
View Article and Find Full Text PDF