Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell.
View Article and Find Full Text PDFConjugated polyelectrolytes (CPEs) have been widely used as reporters in colorimetric assays targeting nucleic acids. CPEs provide naked eye detection possibility by their superior optical properties however, as concentration of target analytes decrease, trace amounts of nucleic acid typically yield colorimetric responses that are not readily perceivable by naked eye. Herein, we report a pixelated analysis approach for correlating colorimetric responses of CPE with nucleic acid concentrations down to 1 nM, in plasma samples, utilizing a smart phone with an algorithm that can perform analytical testing and data processing.
View Article and Find Full Text PDFA flow-through colorimetric assay for detection of nucleic acids in plasma is reported. The proposed assay features an array of four polyvinylidene fluoride (PVDF) membranes impregnated with cationic poly (3-alkoxy-4-methylthiophene) (PT) as an optical reporter. The sensing strategy is based on monitoring the changes in optical properties of PT, upon complexation with target nucleic acids in the presence and in the absence of their corresponding complementary peptide nucleic acids (PNAs).
View Article and Find Full Text PDFInsect Odorant receptors (OrXs) can be used as the recognition element in a biosensor as they demonstrate high levels of sensitivity and selectivity towards volatile organic compounds. Herein, we describe a method to express and purify insect odorant receptors and reconstitute them into artificial lipid bilayers (liposomes). These OrX/liposomes were covalently attached to a gold surface and characterized using quartz crystal microbalance with dissipation monitoring (QCM-D).
View Article and Find Full Text PDFHerein, we present that insect odorant receptors reconstituted into the lipid bilayers of liposomes can be successfully immobilized onto a gold surface and selectively and sensitively detect odorant molecules. The odorant receptors (OrXs) Or10a, Or22a, and Or71a from the common fruit fly, Drosophila melanogaster, were recombinantly expressed, purified and integrated into nano-liposomes (100-200 nm). These liposomes were covalently attached to the self-assembled monolayers (SAMs) of a 6-mercaptohexanoic acid (MHA)-modified gold surface.
View Article and Find Full Text PDFHere we report on the design and synthesis of cationic water-soluble thiophene copolymers as reporters for colorimetric detection of microRNA (miRNA) in human plasma. Poly(3-alkoxythiophene) (PT) polyelectrolytes with controlled ratios of pendant groups such as triethylamine/1-methyl imidazole were synthesized for optimizing interaction with target miRNA sequence (Tseq). Incorporation of specific peptide nucleic acid (PNA) sequences with the cationic polythiophenes yielded distinguishable responses upon formation of fluorescent PT-PNA-Tseq triplex and weakly fluorescent PT-Tseq duplex, thereby enabling selective detection of target miRNA.
View Article and Find Full Text PDFA novel approach for miRNA assay using a cationic polythiophene derivative, poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrobromide] (PT), immobilized on a quartz resonator is proposed. The cationic PT enables capturing of all RNA sequences in the sample matrix via electrostatic interactions, resulting in the formation of PT-RNA duplex structures on quartz resonators. Biotinylated peptide nucleic acid (b-PNA) sequences are subsequently utilized for the RNA assay, upon monitoring the PT-RNA-b-PNA triplex formation.
View Article and Find Full Text PDF